当前位置:首页 » 操作系统 » hash算法的实现

hash算法的实现

发布时间: 2022-05-25 00:04:36

㈠ hash 的算法

Hash(哈希算法) 哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。一般用于快速查找和加密算法。

㈡ hash算法是什么

哈希算法(Hash 算法,Hash 算式,散列算法,消息摘要算法)将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。

构成哈希算法的条件:

从哈希值不能反向推导出原始数据(所以哈希算法也叫单向哈希算法)。

对输入数据非常敏感,哪怕原始数据只修改了一个 Bit,最后得到的哈希值也大不相同。

散列冲突的概率要很小,对于不同的原始数据,哈希值相同的概率非常小。

哈希算法的执行效率要尽量高效,针对较长的文本,也能快速地计算出哈希值。

常见hash算法的原理

散列表,它是基于快速存取的角度设计的,也是一种典型的“空间换时间”的做法。顾名思义,该数据结构可以理解为一个线性表,但是其中的元素不是紧密排列的,而是可能存在空隙。

散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

㈢ 区块链技术中的哈希算法是什么

1.1. 简介

计算机行业从业者对哈希这个词应该非常熟悉,哈希能够实现数据从一个维度向另一个维度的映射,通常使用哈希函数实现这种映射。通常业界使用y = hash(x)的方式进行表示,该哈希函数实现对x进行运算计算出一个哈希值y。
区块链中哈希函数特性:

  • 函数参数为string类型;

  • 固定大小输出;

  • 计算高效;

  • collision-free 即冲突概率小:x != y => hash(x) != hash(y)

    隐藏原始信息:例如区块链中各个节点之间对交易的验证只需要验证交易的信息熵,而不需要对原始信息进行比对,节点间不需要传输交易的原始数据只传输交易的哈希即可,常见算法有SHA系列和MD5等算法

  • 1.2. 哈希的用法

    哈希在区块链中用处广泛,其一我们称之为哈希指针(Hash Pointer)
    哈希指针是指该变量的值是通过实际数据计算出来的且指向实际的数据所在位置,即其既可以表示实际数据内容又可以表示实际数据的存储位置。下图为Hash Pointer的示意图


㈣ hash算法原理

Hash Join概述 Hash join算法的一个基本思想就是根据小的row sources(称作build input,我们记较小的表为S,较大的表为B) 建立一个可以存在于hash area内存中的hash table,然后用大的row sources(称作probe input) 来探测前面所建的hash table。如果hash area内存不够大,hash table就无法完全存放在hash area内存中。针对这种情况,Oracle在连接键利用一个hash函数将build input和probe input分割成多个不相连的分区(分别记作Si和Bi),这个阶段叫做分区阶段;然后各自相应的分区,即Si和Bi再做Hash join,这个阶段叫做join阶段。如果在分区后,针对某个分区所建的hash table还是太大的话,oracle就采用nested-loops hash join。所谓的nested-loops hash join就是对部分Si建立hash table,然后读取所有的Bi与所建的hash table做连接,然后再对剩余的Si建立hash table,再将所有的Bi与所建的hash table做连接,直至所有的Si都连接完了。 Hash Join算法有一个限制,就是它是在假设两张表在连接键上是均匀的,也就是说每个分区拥有差不多的数据。但是实际当中数据都是不均匀的,为了很好地解决这个问题,oracle引进了几种技术,位图向量过滤、角色互换、柱状图,这些术语的具体意义会在后面详细介绍。 二. Hash Join原理我们用一个例子来解释Hash Join算法的原理,以及上述所提到的术语。考虑以下两个数据集。 S={1,1,1,3,3,4,4,4,4,5,8,8,8,8,10} B={0,0,1,1,1,1,2,2,2,2,2,2,3,8,9,9,9,10,10,11} Hash Join的第一步就是判定小表(即build input)是否能完全存放在hash area内存中。如果能完全存放在内存中,则在内存中建立hash table,这是最简单的hash join。如果不能全部存放在内存中,则build input必须分区。分区的个数叫做fan-out。Fan-out是由hash_area_size和cluster size来决定的。其中cluster size等于db_block_size * hash_multiblock_io_count,hash_multiblock_io_count在oracle9i中是隐含参数。这里需要注意的是fan-out并不是build input的大小/hash_ara_size,也就是说oracle决定的分区大小有可能还是不能完全存放在hash area内存中。大的fan-out导致许多小的分区,影响性能,而小的fan-out导致少数的大的分区,以至于每个分区不能全部存放在内存中,这也影响hash join的性能。 Oracle采用内部一个hash函数作用于连接键上,将S和B分割成多个分区,在这里我们假设这个hash函数为求余函数,即Mod(join_column_value,10)。这样产生十个分区,如下表. 经过这样的分区之后,只需要相应的分区之间做join即可(也就是所谓的partition pairs),如果有一个分区为NULL的话,则相应的分区join即可忽略。 在将S表读入内存分区时,oracle即记录连接键的唯一值,构建成所谓的位图向量,它需要占hash area内存的5%左右。在这里即为{1,3,4,5,8,10}。 当对B表进行分区时,将每一个连接键上的值与位图向量相比较,如果不在其中,则将其记录丢弃。在我们这个例子中,B表中以下数据将被丢弃 {0,0,2,2,2,2,2,2,9,9,9,9,9}。这个过程就是位图向量过滤。 当S1,B1做完连接后,接着对Si,Bi进行连接,这里oracle将比较两个分区,选取小的那个做build input,就是动态角色互换,这个动态角色互换发生在除第一对分区以外的分区上面。

㈤ 一致性hash算法,采用哪种算法实现比较好,比如MD5,CRC32,或者其它

环割法(一致性 hash)环割法的原理如下:

1. 初始化的时候生成分片数量 X × 环割数量 N 的固定方式编号的字符串,例如 SHARD-1-NODE-1,并计算所有 X×N 个字符串的所有 hash 值。

2. 将所有计算出来的 hash 值放到一个排序的 Map 中,并将其中的所有元素进行排序。

3. 输入字符串的时候计算输入字符串的 hash 值,查看 hash 值介于哪两个元素之间,取小于 hash 值的那个元素对应的分片为数据的分片。

数据比较

下面将通过测试对环割法和跳跃法的性能及均衡性进行对比,说明 DBLE 为何使用跳跃法代替了环割法。

  • 数据源:现场数据 350595 条

  • 测试经过:

    1. 通过各自的测试方法执行对于测试数据的分片任务。

    2. 测试方法:记录分片结果的方差;记录从开始分片至分片结束的时间;记录分片结果与平均数的最大差值。

    3. 由于在求模法 PartitionByString 的方法中要求分片的数量是 1024 的因数,所以测试过程只能使用 2 的指数形式进行测试,并在 PartitionByString 方法进行测试的时候不对于 MAC 地址进行截断,取全量长度进行测试。

㈥ Hash算法原理

散列表,它是基于高速存取的角度设计的,也是一种典型的“空间换时间”的做法。顾名思义,该数据结构能够理解为一个线性表,可是当中的元素不是紧密排列的,而是可能存在空隙。

散列表(Hash table,也叫哈希表),是依据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。

比方我们存储70个元素,但我们可能为这70个元素申请了100个元素的空间。70/100=0.7,这个数字称为负载因子。

我们之所以这样做,也是为了“高速存取”的目的。我们基于一种结果尽可能随机平均分布的固定函数H为每一个元素安排存储位置,这样就能够避免遍历性质的线性搜索,以达到高速存取。可是因为此随机性,也必定导致一个问题就是冲突。

所谓冲突,即两个元素通过散列函数H得到的地址同样,那么这两个元素称为“同义词”。这类似于70个人去一个有100个椅子的饭店吃饭。散列函数的计算结果是一个存储单位地址,每一个存储单位称为“桶”。设一个散列表有m个桶,则散列函数的值域应为[0,m-1]。

(6)hash算法的实现扩展阅读:

SHA家族的五个算法,分别是SHA-1、SHA-224、SHA-256、SHA-384,和SHA-512,由美国国家安全局(NSA)所设计,并由美国国家标准与技术研究院(NIST)发布;是美国的政府标准。后四者有时并称为SHA-2。

SHA-1在许多安全协定中广为使用,包括TLS和SSL、PGP、SSH、S/MIME和IPsec,曾被视为是MD5(更早之前被广为使用的杂凑函数)的后继者。但SHA-1的安全性如今被密码学家严重质疑;

虽然至今尚未出现对SHA-2有效的攻击,它的算法跟SHA-1基本上仍然相似;因此有些人开始发展其他替代的杂凑算法。

应用

SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全杂凑算法的美国联邦政府所应用,他们也使用其他的密码算法和协定来保护敏感的未保密资料。FIPS PUB 180-1也鼓励私人或商业组织使用 SHA-1 加密。Fritz-chip 将很可能使用 SHA-1 杂凑函数来实现个人电脑上的数位版权管理。

首先推动安全杂凑算法出版的是已合并的数位签章标准。

SHA 杂凑函数已被做为 SHACAL 分组密码算法的基础。

㈦ 哈希算法是怎么实现的

哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。一般用于快速查找和加密算法。[1]

java中哪些地方实现了一致性hash算法

关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法、一致性Hash算法的算法原理做了详细的解读。

算法的具体原理这里再次贴上:

先构造一个长度为232的整数环(这个环被称为一致性Hash环),根据节点名称的Hash值(其分布为[0, 232-1])将服务器节点放置在这个Hash环上,然后根据数据的Key值计算得到其Hash值(其分布也为[0, 232-1]),接着在Hash环上顺时针查找距离这个Key值的Hash值最近的服务器节点,完成Key到服务器的映射查找。

这种算法解决了普通余数Hash算法伸缩性差的问题,可以保证在上线、下线服务器的情况下尽量有多的请求命中原来路由到的服务器。

当然,万事不可能十全十美,一致性Hash算法比普通的余数Hash算法更具有伸缩性,但是同时其算法实现也更为复杂,本文就来研究一下,如何利用Java代码实现一致性Hash算法。在开始之前,先对一致性Hash算法中的几个核心问题进行一些探究。

㈨ Hash算法原理

哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。

㈩ java 1.哈希算法的实现:

public class Test { /*创建类*/

public static void main(String[] args) {
System.out.println(dg(100));
}

static int dg(int i) { /*定义变量 */
int sum;
if (i == 1) /*假设条件*/
return 1;
else
sum = i + dg(i - 1); /*1~100的和的表达式*/
return sum; /*返回结果*/
}
}
这个脚本语言为 Internet 应用而生,它可以看作是 Haskell 和 Java 的结合。

热点内容
巴法云服务器带宽 发布:2025-01-12 13:15:26 浏览:675
搭建国外服务器需要多少钱 发布:2025-01-12 13:08:01 浏览:826
我的世界mod服务器开荒 发布:2025-01-12 13:07:10 浏览:756
sql优化书 发布:2025-01-12 13:07:09 浏览:454
高校网站服务器搭建与维护论文 发布:2025-01-12 13:06:31 浏览:710
sqlserver实例没有 发布:2025-01-12 12:57:18 浏览:251
代码文件服务器地址怎么写 发布:2025-01-12 12:50:47 浏览:759
java中方法与 发布:2025-01-12 12:50:13 浏览:654
如何快速查找c语言编译时的错 发布:2025-01-12 12:49:56 浏览:31
看门狗上传病毒 发布:2025-01-12 12:32:54 浏览:326