当前位置:首页 » 操作系统 » 哈希算法查找

哈希算法查找

发布时间: 2022-05-23 21:56:33

1. 什么是哈希算法

就是空间映射函数,例如,全体的长整数的取值作为一个取值空间,映射到全部的字节整数的取值的空间,这个映射函数就是HASH函数。通常这种映射函数是从一个非常大的取值空间映射到一个非常小的取值空间,由于不是一对一的映射,HASH函数转换后不可逆,即不可能通过逆操作和HASH值还原出原始的值,受到计算能力限制(注意,不是逻辑上不可能,前面的不可能是逻辑上的)而且也无法还原出所有可能的全部原始值。HASH函数运用在字典表等需要快速查找的数据结构中,他的计算复杂度几乎是O(1),不会随着数据量增加而增加。另外一种用途就是文件签名,文件内容很多,将文件内容通过HASH函数处理后得到一个HASH值,验证这个文件是否被修改过,只需要把文件内容用同样的HASH函数处理后得到HASH值再比对和文件一起传送的HASH值即可,如不公开HASH算法,那么信道是无法篡改文件内容的时候篡改文件HASH值,一般应用的时候,HASH算法是公开的,这时候会用一个非对称加密算法加密一下这个HASH值,这样即便能够计算HASH值,但没有加密密钥依然无法篡改加密后HASH值。这种算法用途很广泛,用在电子签名中。HASH算法也可进行破解,这种破解不是传统意义上的解密,而是按照已有的HASH值构造出能够计算出相同HASH值的其他原文,从而妨碍原文的不可篡改性的验证,俗称找碰撞。这种碰撞对现有的电子签名危害并不严重,主要是要能够构造出有意义的原文才有价值,否则就是构造了一个完全不可识别的原文罢了,接收系统要么无法处理报错,要么人工处理的时候发现完全不可读。理论上我们终于找到了在可计算时间内发现碰撞的算法,推算了HASH算法的逆操作的时间复杂度大概的范围。HASH算法的另外一个很广泛的用途,就是很多程序员都会使用的在数据库中保存用户密码的算法,通常不会直接保存用户密码(这样DBA就能看到用户密码啦,好危险啊),而是保存密码的HASH值,验证的时候,用相同的HASH函数计算用户输入的密码得到计算HASH值然后比对数据库中存储的HASH值是否一致,从而完成验证。由于用户的密码的一样的可能性是很高的,防止DBA猜测用户密码,我们还会用一种俗称“撒盐”的过程,就是计算密码的HASH值之前,把密码和另外一个会比较发散的数据拼接,通常我们会用用户创建时间的毫秒部分。这样计算的HASH值不大会都是一样的,会很发散。最后,作为一个老程序员,我会把用户的HASH值保存好,然后把我自己密码的HASH值保存到数据库里面,然后用我自己的密码和其他用户的用户名去登录,然后再改回来解决我看不到用户密码而又要“偷窥”用户的需要。最大的好处是,数据库泄露后,得到用户数据库的黑客看着一大堆HASH值会翻白眼。

2. hash算法是什么

Hash,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。

使用哈希查找有两个步骤:

1、使用哈希函数将被查找的键转换为数组的索引。在理想的情况下,不同的键会被转换为不同的索引值,但是在有些情况下我们需要处理多个键被哈希到同一个索引值的情况。所以哈希查找的第二个步骤就是处理冲突。

2、处理哈希碰撞冲突。有很多处理哈希碰撞冲突的方法,本文后面会介绍拉链法和线性探测法。

3. 哈希查找算法程序

查找算法
基本要求:
(1)设计一个菜单将实现的查找算法的名字显示出来,并提示用户对查找算法进行选择;
(2)分别实现顺序查找、二分查找(折半查找)、二叉排序树、哈希查找;
(3)哈希函数采用除留余数发,解决冲突的方法大家任选择一种;
(4)二叉排序树必须实现构建、查找、插入、删除四个基本操作;
(5)输出各种排序的结果并进行比较。*/

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#define MAX 20
typedef struct /*顺序结构数据类型*/
h.length++;
h.r[ }
else
if(k<l.r[mid].key) high=mid-1;
else low=mid +1;
}
if(i!=0)
{
printf("l.r[%d].key=%d\n",i,k);
printf("查找成功\n");
}
return ht;
}
void HashSearch(RecordHash ht) /*哈希查找*/
{
int k,i;
page_title("哈希查找");
printf("请输入要查找的关键字:");
scanf("%d",&k);
i=k%13;
if(ht.HashTable[i].key==k)
{
printf("ht.HashTable[%d].key=%d\n",i,k);
printf("查找成功\n");
}
else
{
i=i+1;
for(;i<MAX;i++)
if(ht.HashTable[i].key==k)
{
printf("ht.HashTable[%d].key=%d\n",i,k);
printf("查找成功\n");
break;
}
if(i==MAX) printf("查找失败\n");
}
return_confirm();
}
void main()
{
RecordList L1,L2;
BSTNode *pt;
RecordHash ht;
int k,i;
printf("\n创建顺序查找线性表,输入0则结束输入(可不按顺序输入)\n");
L1=creat1();
printf("\n创建二分查找线性表,输入0则结束输入(按递增顺序输入)\n");
L2=creat1();
printf("\n创建二叉排序树,输入0则结束输入\n");
pt=creat2();
printf("\n创建哈希表\n");
ht=creat3();
menu:page_title("请选择查找方式,输入0则结束输入");
printf("顺序查找请按1\n二分查找请按2\n二叉排序树查找请按3\n哈希查找请按4\n推出请按0\n");
switch(getch())
{
case '1':
SeqSearch(L1);
break;
case '2':
Binsrch(L2);
break;
case '3':
page_title("二叉排序树查找");
printf("请输入要查找的关键字:");
scanf("%d",&k);
SearchBST(pt,k);
break;
case '4':
HashSearch(ht);
break;
case '0':
exit(0);
default :
printf("输入错误,按任意键返回");
getch();
}
goto menu;

4. hash算法是怎么样的

hash算法是一种散列算法,是把任意的长度的输入,转换成固定的额输出,福鼎的输出,输出的是散列值。在空间的比较中,输入的空间是远大于输出的散列值的空间,不同输入散列成同样的输出,一般很难从输出的散列值获取输入值的。

常用的hash函数有直接取余法、乘法取整法,平方取中法。在直接取余法中,质数用到的比较多,在乘法取整法中,主要用于实数,在平方取中法里面,平方后取中间的,每位包含的信息比较多些。

Hash在管理数据结构中的应用

在用到hash进行管理的数据结构中,就对速度比较重视,对抗碰撞不太看中,只要保证hash均匀分布就可以。比如hashmap,hash值(key)存在的目的是加速键值对的查找,key的作用是为了将元素适当地放在各个桶里,对于抗碰撞的要求没有那么高。

换句话说,hash出来的key,只要保证value大致均匀的放在不同的桶里就可以了。但整个算法的set性能,直接与hash值产生的速度有关,所以这时候的hash值的产生速度就尤为重要。

5. 对比顺序查找、二分查找和哈希查找算法,它们各自的特点是什么

顺序查找,二分查找和哈希查找算法,它们各自的特点是:
1.对比顺序查找的特点就是从表的第一个元素开始一个一个向下查找,如果有和目标一致的元素,查找成功;如果到最后一个元素仍没有目标元素,则查找失败。
2.二分查找的特点就是从表中间开始查找目标元素。如果找到一致元素,则查找成功。如果中间元素比目标元素小,则仍用二分查找方法查找表的后半部分(表是递增排列的),反之中间元素比目标元素大,则查找表的前半部分。
3.哈希算法的特点是是使用给定数据构造哈希表,然后在哈希表上进行查找的一种算法。先给定一个值,然后根据哈希函数求得哈希地址,再根据哈希地址查找到要找的元素。是通过数据元素的存储地址进行查找的一种算法。

6. 区块链哈希算法是什么

哈希算法也被称为“散列”,是区块链的四大核心技术之一。是能计算出一个数字消息所对应的、长度固定的字符串(又称消息摘要)的算法。由于一段数据只有一个哈希值,所以哈希算法可以用于检验数据的完整性。在快速查找和加密算法的应用方面,哈希算法的使用非常普遍。

在互联网时代,尽管人与人之间的距离更近了,但是信任问题却更严重了。 现存的第三方中介组织的技术架构都是私密而且中心化的,这种模式永远都无法从根本上解决互信以及价值转移的问题。因此,区块链技术将会利用去中心化的数据库架构完成数据交互信任背书,实现全球互信的一大跨步。在这一过 程中,哈希算法发挥了重要作用。

散列算法是区块链中保证交易信息不被篡改的单向密码机制。区块链通过散列算法对一个交易区块中的交易进行加密,并把信息压缩成由一串数字和字母组成的散列字符串。区块链的散列值能够唯一而准确地标识一个区块。在验证区块的真实性时,只需要简单计算出这个区块的散列值,如果没有变化就 意味着这个区块上的信息是没有被篡改过的。

链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。

7. 查找算法的哈希表查找

1 基本原理
我们使用一个下标范围比较大的数组来存储元素。可以设计一个函数(哈希函数, 也叫做散列函数),使得每个元素的关键字都与一个函数值(即数组下标)相对应,于是用这个数组单元来存储这个元素;也可以简单的理解为,按照关键字为每一个元素分类,然后将这个元素存储在相应类所对应的地方。
但是,不能够保证每个元素的关键字与函数值是一一对应的,因此极有可能出现对于不同的元素,却计算出了相同的函数值,这样就产生了冲突,换句话说,就是把不同的元素分在了相同的类之中。后面我们将看到一种解决冲突的简便做法。
总的来说,直接寻址与解决冲突是哈希表的两大特点。
2 函数构造
构造函数的常用方法(下面为了叙述简洁,设 h(k) 表示关键字为 k 的元素所对应的函数值):
a) 除余法:
选择一个适当的正整数 p ,令 h(k ) = k mod p这里, p 如果选取的是比较大的素数,效果比较好。而且此法非常容易实现,因此是最常用的方法。
b) 数字选择法:
如果关键字的位数比较多,超过长整型范围而无法直接运算,可以选择其中数字分布比较均匀的若干位,所组成的新的值作为关键字或者直接作为函数值。
3冲突处理
线性重新散列技术易于实现且可以较好的达到目的。令数组元素个数为 S ,则当 h(k) 已经存储了元素的时候,依次探查 (h(k)+i) mod S , i=1,2,3…… ,直到找到空的存储单元为止(或者从头到尾扫描一圈仍未发现空单元,这就是哈希表已经满了,发生了错误。当然这是可以通过扩大数组范围避免的)。
4 支持运算
哈希表支持的运算主要有:初始化(makenull)、哈希函数值的运算(h(x))、插入元素(insert)、查找元素(member)。设插入的元素的关键字为 x ,A 为存储的数组。初始化比较容易,例如const empty=maxlongint; // 用非常大的整数代表这个位置没有存储元素p=9997; // 表的大小procere makenull;var i:integer;beginfor i:=0 to p-1 doA:=empty;End;
哈希函数值的运算根据函数的不同而变化,例如除余法的一个例子:function h(x:longint):Integer;beginh:= x mod p;end;
我们注意到,插入和查找首先都需要对这个元素定位,即如果这个元素若存在,它应该存储在什么位置,因此加入一个定位的函数 locatefunction locate(x:longint):integer;var orig,i:integer;beginorig:=h(x);i:=0;while (ix)and(A[(orig+i)mod S]empty) doinc(i);//当这个循环停下来时,要么找到一个空的存储单元,要么找到这个元//素存储的单元,要么表已经满了locate:=(orig+i) mod S;end;插入元素procere insert(x:longint);var posi:integer;beginposi:=locate(x); //定位函数的返回值if A[posi]=empty then A[posi]:=xelse error; //error 即为发生了错误,当然这是可以避免的end;
查找元素是否已经在表中procere member(x:longint):boolean;var posi:integer;beginposi:=locate(x);if A[posi]=x then member:=trueelse member:=false;end;

8. 常见的哈希算法有哪些

1、RSHash
unsigned int RSHash(const std::string& str)
{
unsigned int b = 378551;
unsigned int a = 63689;
unsigned int hash = 0;

for(std::size_t i = 0; i < str.length(); i++)
{
hash = hash * a + str[i];
a = a * b;
}

return hash;
}

2、JSHash
unsigned int JSHash(const std::string& str)
{
unsigned int hash = 1315423911;
for(std::size_t i = 0; i < str.length(); i++)
{
hash ^= ((hash << 5) + str[i] + (hash >> 2));
}
return hash;
}

3、PJWHash
unsigned int PJWHash(const std::string& str)
{
unsigned int BitsInUnsignedInt = (unsigned int)(sizeof(unsigned int) * 8);
unsigned int ThreeQuarters = (unsigned int)((BitsInUnsignedInt * 3) / 4);
unsigned int OneEighth = (unsigned int)(BitsInUnsignedInt / 8);
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);
unsigned int hash = 0;
unsigned int test = 0;

for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash << OneEighth) + str[i];

if((test = hash & HighBits) != 0)
{
hash = (( hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
}
return hash;
}

4、ELFHash
unsigned int ELFHash(const std::string& str)
{
unsigned int hash = 0;
unsigned int x = 0;

for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash << 4) + str[i];
if((x = hash & 0xF0000000L) != 0)
{
hash ^= (x >> 24);
}
hash &= ~x;
}

return hash;
}

5、BKDRHash
unsigned int BKDRHash(const std::string& str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0;

for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash * seed) + str[i];
}
return hash;
}

哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。一般用于快速查找和加密算法。

热点内容
微信猜拳算法 发布:2024-10-26 19:23:35 浏览:390
android编译第三方库 发布:2024-10-26 19:14:20 浏览:615
苹果手机怎么用蓝牙传照片给安卓 发布:2024-10-26 18:57:40 浏览:614
ios8程序加密 发布:2024-10-26 18:30:27 浏览:532
密码门锁没电了用什么数据线 发布:2024-10-26 18:21:11 浏览:854
linuxloop 发布:2024-10-26 18:20:46 浏览:932
linuxvg查看 发布:2024-10-26 18:09:51 浏览:585
图标是钥匙的加密软件 发布:2024-10-26 18:07:31 浏览:625
vip七九宝琉璃怎么配置魂环 发布:2024-10-26 17:51:17 浏览:571
opencv编译linux 发布:2024-10-26 17:49:50 浏览:983