数据库引索表
‘壹’ 数据库表如何建立索引
可以建立索引的;至于建立聚集索引或者是非聚集索引,那要看你这个时间字段的具体情况以及使用或变更频繁程度。
一般来说,适合建立聚集索引的要求:“既不能绝大多数都相同,又不能只有极少数相同”的规则。
先说说一个误区:有人认为:只要建立索引就能显着提高查询速度。这个想法是很错误的。建立非聚集索引,确实,一般情况下可以提高速度,但是一般并不会达到你想要的速度。只有在适当的列建立适当的(聚集)索引,才能达到满意的效果。
下面的表总结了何时使用聚集索引或非聚集索引(很重要)。
动作描述
使用聚集索引
使用非聚集索引
列经常被分组排序
应应
返回某范围内的数据
应
不应
一个或极少不同值
不应
不应
小数目的不同值
应
不应
大数目的不同值
不应
应
频繁更新的列
不应
应
外键列
应应
主键列
应应
频繁修改索引列
不应
应
别的就要看你的理解了。
‘贰’ 数据库索引怎么建立
right © 1999-2020, CSDN.NET, All Rights Reserved
程序员必备的浏览器插件
登录
越来越好ing
关注
数据库索引是什么,有什么用,怎么用 转载
2018-12-04 23:30:36
5点赞
越来越好ing
码龄2年
关注
下面是关于数据库索引的相关知识:
简单来说,数据库索引就是数据库的数据结构!进一步说则是该数据结构中存储了一张表中某一列的所有值,也就是说索引是基于数据表中的某一列创建的。总而言之:一个索引是由表中某一列上的数据组成,并且这些数据存储在某个数据结构中。
2.索引的作用。举个例子,假设有一张数据表Emplyee,该表有三列:
表中有几万条记录。现在要执行下面这条查询语句,查找出所有名字叫“Jesus”的员工的详细信息
3.如果没有数据库索引功能,数据库系统会逐行的遍历整张表,对于每一行都要检查其Employee_Name字段是否等于“Jesus”。因为我们要查找所有名字为“Jesus”的员工,所以当我们发现了一条名字是“Jesus”的记录后,并不能停止继续查找,因为可能有其他员工也叫“Jesus”。这就意味着,对于表中的几万条记录,数据库每一条都要检查。这就是所谓的“全表扫描”( full table scan)
4.而数据库索引功能索引的最大作用就是加快查询速度,它能从根本上减少需要扫表的记录/行的数量。
5.如何创建数据库索引。可以基于Employee表的两列创建索引即可:
拓展资料:
索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。如果想按特定职员的姓来查找他或她,则与在表中搜索所有的行相比,索引有助于更
‘叁’ MYSQL数据库索引类型都有哪些
聚集索引:也称 Clustered Index。是指关系表记录的物理顺序与索引的逻辑顺序相同。由于一张表只能按照一种物理顺序存放,一张表最多也只能存在一个聚集索引。与非聚集索引相比,聚集索引有着更快的检索速度。
MySQL 里只有 INNODB 表支持聚集索引,INNODB 表数据本身就是聚集索引,也就是常说 IOT,索引组织表。非叶子节点按照主键顺序存放,叶子节点存放主键以及对应的行记录。所以对 INNODB 表进行全表顺序扫描会非常快。
非聚集索引:也叫 Secondary Index。指的是非叶子节点按照索引的键值顺序存放,叶子节点存放索引键值以及对应的主键键值。MySQL 里除了 INNODB 表主键外,其他的都是二级索引。MYISAM,memory 等引擎的表索引都是非聚集索引。简单点说,就是索引与行数据分开存储。一张表可以有多个二级索引。
‘肆’ 数据库索引的实现原理
数据库索引的实现原理
一、概述数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。其实说穿了,索引问题就是一个查找问题。二、索引的原理当我们的业务产生了大量的数据时,查找数据的效率问题也就随之而来,所以我们可以通过为表设置索引,而为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。
上图展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。创建索引可以大大提高系统的性能第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序子句进行数据检索时,同样可以显着减少查询中分组和排序的时间。第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?因为,增加索引也有许多不利的方面。创建索引的弊端第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。三、索引的类型根据数据库的功能,可以在数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引。唯一索引唯一索引是不允许其中任何两行具有相同索引值的索引。当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在employee表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。主键索引数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。聚集索引在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。四、局部性原理与磁盘预读由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中着名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。五、B树和B+树数据结构1、B树B树中每个节点包含了键值和键值对于的数据对象存放地址指针,所以成功搜索一个对象可以不用到达树的叶节点。成功搜索包括节点内搜索和沿某一路径的搜索,成功搜索时间取决于关键码所在的层次以及节点内关键码的数量。在B树中查找给定关键字的方法是:首先把根结点取来,在根结点所包含的关键字K1,…,kj查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功;否则,一定可以确定要查的关键字在某个Ki或Ki+1之间,于是取Pi所指的下一层索引节点块继续查找,直到找到,或指针Pi为空时查找失败。2、B+树B+树非叶节点中存放的关键码并不指示数据对象的地址指针,非也节点只是索引部分。所有的叶节点在同一层上,包含了全部关键码和相应数据对象的存放地址指针,且叶节点按关键码从小到大顺序链接。如果实际数据对象按加入的顺序存储而不是按关键码次数存储的话,叶节点的索引必须是稠密索引,若实际数据存储按关键码次序存放的话,叶节点索引时稀疏索引。B+树有2个头指针,一个是树的根节点,一个是最小关键码的叶节点。所以 B+树有两种搜索方法:一种是按叶节点自己拉起的链表顺序搜索。一种是从根节点开始搜索,和B树类似,不过如果非叶节点的关键码等于给定值,搜索并不停止,而是继续沿右指针,一直查到叶节点上的关键码。所以无论搜索是否成功,都将走完树的所有层。B+ 树中,数据对象的插入和删除仅在叶节点上进行。这两种处理索引的数据结构的不同之处:1、B树中同一键值不会出现多次,并且它有可能出现在叶结点,也有可能出现在非叶结点中。而B+树的键一定会出现在叶结点中,并且有可能在非叶结点中也有可能重复出现,以维持B+树的平衡。2、因为B树键位置不定,且在整个树结构中只出现一次,虽然可以节省存储空间,但使得在插入、删除操作复杂度明显增加。B+树相比来说是一种较好的折中。3、B树的查询效率与键在树中的位置有关,最大时间复杂度与B+树相同(在叶结点的时候),最小时间复杂度为1(在根结点的时候)。而B+树的时候复杂度对某建成的树是固定的。六、B/+Tree索引的性能分析到这里终于可以分析B-/+Tree索引的性能了。上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。综上所述,用B-Tree作为索引结构效率是非常高的。
‘伍’ 数据库索引是什么,有什么用,怎么用
1、数据库索引是什么,有什么用
数据库索引是对数据库表中一列或多列的值进行排序的一种结构,使用索引可快速访问数据库表中的特定信息。如果想按特定职员的姓来查找他或她,则与在表中搜索所有的行相比,索引有助于更快地获取信息。
索引的一个主要目的就是加快检索表中数据的方法,亦即能协助信息搜索者尽快的找到符合限制条件的记录ID的辅助数据结构。
2、数据库索引的用法
当表中有大量记录时,若要对表进行查询,第一种搜索信息方式是全表搜索,是将所有记录一一取出,和查询条件进行一一对比,然后返回满足条件的记录,这样做会消耗大量数据库系统时间,并造成大量磁盘I/O操作;
第二种就是在表中建立索引,然后在索引中找到符合查询条件的索引值,最后通过保存在索引中的ROWID(相当于页码)快速找到表中对应的记录。
索引是一个单独的、物理的数据库结构,它是某个表中一列或若干列值的集合和相应的指向表中物理标识值的数据页的逻辑指针清单。
(5)数据库引索表扩展阅读:
一、索引的原理:
对要查询的字段建立索引其实就是把该字段按照一定的方式排序;建立的索引只对该字段有用,如果查询的字段改变,那么这个索引也就无效了,比如图书馆的书是按照书名的第一个字母排序的,那么你想要找作者叫张三的就不能用改索引了;还有就是如果索引太多会降低查询的速度。
二、数据库索引的特点:
1、避免进行数据库全表的扫描,大多数情况,只需要扫描较少的索引页和数据页,而不是查询所有数据页。而且对于非聚集索引,有时不需要访问数据页即可得到数据。
2、聚集索引可以避免数据插入操作,集中于表的最后一个数据页面。
3、在某些情况下,索引可以避免排序操作。
‘陆’ 数据库索引有哪几种,怎样建立索引
数据库索引的种类:
1、按照索引列值的唯一性,索引可分为唯一索引和非唯一索引
非唯一索引:B树索引
create index 索引名 on 表名(列名) tablespace 表空间名;
唯一索引:建立主键或者唯一约束时会自动在对应的列上建立唯一索引
2、索引列的个数:单列索引和复合索引
3、按照索引列的物理组织方式
B树索引
create index 索引名 on 表名(列名) tablespace 表空间名;
位图索引
create bitmap index 索引名 on 表名(列名) tablespace 表空间名;
反向键索引
create index 索引名 on 表名(列名) reverse tablespace 表空间名;
函数索引
create index 索引名 on 表名(函数名(列名)) tablespace 表空间名;
删除索引
drop index 索引名
重建索引
alter index 索引名 rebuild
索引的创建格式:
CREATE UNIUQE | BITMAP INDEX <schema>.<index_name>
ON <schema>.<table_name>
(<column_name> | <expression> ASC | DESC,
<column_name> | <expression> ASC | DESC,...)
TABLESPACE <tablespace_name>
STORAGE <storage_settings>
LOGGING | NOLOGGING
COMPUTE STATISTICS
NOCOMPRESS | COMPRESS<nn>
NOSORT | REVERSE
PARTITION | GLOBAL PARTITION<partition_setting>
UNIQUE | BITMAP:指定UNIQUE为唯一值索引,BITMAP为位图索引,省略为B-Tree索引。
<column_name> | <expression> ASC | DESC:可以对多列进行联合索引,当为expression时即“基于函数的索引”
TABLESPACE:指定存放索引的表空间(索引和原表不在一个表空间时效率更高)
STORAGE:可进一步设置表空间的存储参数
LOGGING | NOLOGGING:是否对索引产生重做日志(对大表尽量使用NOLOGGING来减少占用空间并提高效率)
COMPUTE STATISTICS:创建新索引时收集统计信息
NOCOMPRESS | COMPRESS<nn>:是否使用“键压缩”(使用键压缩可以删除一个键列中出现的重复值)
NOSORT | REVERSE:NOSORT表示与表中相同的顺序创建索引,REVERSE表示相反顺序存储索引值
PARTITION | NOPARTITION:可以在分区表和未分区表上对创建的索引进行分区
使用USER_IND_COLUMNS查询某个TABLE中的相应字段索引建立情况
使用DBA_INDEXES/USER_INDEXES查询所有索引的具体设置情况。
在Oracle中的索引可以分为:B树索引、位图索引、反向键索引、基于函数的索引、簇索引、全局索引、局部索引等,下面逐一讲解:
一、B树索引:
最常用的索引,各叶子节点中包括的数据有索引列的值和数据表中对应行的ROWID,简单的说,在B树索引中,是通过在索引中保存排过续的索引列值与相对应记录的ROWID来实现快速查询的目的。其逻辑结构如图:
反向键索引是一种特殊的B树索引,在存储构造中与B树索引完全相同,但是针对数值时,反向键索引会先反向每个键值的字节,然后对反向后的新数据进行索引。例如输入2008则转换为8002,这样当数值一次增加时,其反向键在大小中的分布仍然是比较平均的。
反向键索引的创建示例:
createindex ind_t on t1(id) reverse;
注:键的反转由系统自行完成。对于用户是透明的。
四、基于函数的索引:
有的时候,需要进行如下查询:select * from t1 where to_char(date,'yyyy')>'2007';
但是即便在date字段上建立了索引,还是不得不进行全表扫描。在这种情况下,可以使用基于函数的索引。其创建语法如下:
create index ind_t on t1(to_char(date,'yyyy'));
注:简单来说,基于函数的索引,就是将查询要用到的表达式作为索引项。
五、全局索引和局部索引:
这个索引貌似很复杂,其实很简单。总得来说一句话,就是无论怎么分区,都是为了方便管理。
具体索引和表的关系有三种:
1、局部分区索引:分区索引和分区表1对1
2、全局分区索引:分区索引和分区表N对N
3、全局非分区索引:非分区索引和分区表1对N
创建示例:
首先创建一个分区表
createtable student
(
stuno number(5),
sname vrvhar2(10),
deptno number(5)
)
partition by hash (deptno)
(
partition part_01 tablespace A1,
partition part_02 tablespace A2
);
创建局部分区索引(1v1):
create index ind_t on student(stuno)
local(
partition part_01 tablespace A2,
partition part_02 tablespace A1
);--local后面可以不加
创建全局分区索引(NvN):
create index ind_t on student(stuno)
globalpartition by range(stuno)
(
partition p1 values less than(1000) tablespace A1,
partition p2 values less than(maxvalue) tablespace A2
);--只可以进行range分区
创建全局非分区索引(1vN)
createindex ind_t on student(stuno) GLOBAL;
‘柒’ 数据库表的索引有几种啊
1.普通索引、主键索引、唯一索引
2.并非所有的数据库都以相同的方式使用索引,作为通用规则,只有当经常查询列中的数据时才需要在表上创建索引。
‘捌’ 数据库索引是什么,有什么优点和缺点
数据库中索引的优缺点
为什么要创建索引呢?这是因为,创建索引可以大大提高系统的性能。第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。第四,在使用分组和排序子句进行数据检索时,同样可以显着减少查询中分组和排序的时间。第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?这种想法固然有其合理性,然而也有其片面性。虽然,索引有许多优点,但是,为表中的每一个列都增加索引,是非常不明智的。这是因为,增加索引也有许多不利的一个方面。第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
索引是建立在数据库表中的某些列的上面。因此,在创建索引的时候,应该仔细考虑在哪些列上可以创建索引,在哪些列上不能创建索引。一般来说,应该在这些列上创建索引,例如:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
同样,对于有些列不应该创建索引。一般来说,不应该创建索引的的这些列具有下列特点:第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。第三,对于那些定义为text,
image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。
‘玖’ 数据库中的索引是什么意思
什么是索引:
索引是数据库存储引擎用于快速查找到指定数据的一种数据结构。
可以用新华字典做类比:如果新华字典中对每个字的详细解释是数据库中表的记录,那么按部首或拼音等排序的目录就是索引,使用它可以让我们快速查找的某一个字详细解释的位置。
在MySQL中,存储引擎也是用了类似的方法,先在索引中找到对应的值,然后再根据匹配的索引值找到对应表中记录的位置。
面试中为什么问索引:
之所以在索引在面试中经常被问到,就是因为:索引是数据库的良好性能表现的关键,也是对查询能优化最有效的手段。索引能够轻易地把查询性能提高几个数量级。
然而,糟糕的索引也同样会影响查询性能,当表中的数据量越来越多的时候,索引对性能的影响就越大。在数据量比较少并且负责比较低的时候,糟糕的索引对性能的影响可能不明显,但是当数据量逐渐增多的时候,性能会急剧下降。
索引的类型:
不同类型的索引,可以为不同场景提供更好的性能。在MySQL中,索引是在存储引擎层面实现的,而不是在服务器层面实现的。正如大家所知道,MySQL支持多种类型的存储引擎。所以,在不同存储引擎中索引的实现方式并不是一样的,也不是所有类型的索引都被所有存储引擎支持的,即使多个存储引擎支持同一种类型的索引,它底层的实现也有可能是不相同的。
‘拾’ 数据库的索引表的格式是什么样的
数据库中的索引是一个列表,在这个列表中包含了某个表中一列或者若干列值的集合,以及这些值的记录在数据表中的地址。
例:职工表
职工号 姓名 警衔
001 李明 二级警督
005 孙志 二级警督
006 王伟华 二级警司
004 张继业 三级警督
008 黄华 三级警督
002 李新 三级警司
007 王华 一级警督
003 刘明明 一级警监
编号索引表
职工号 指针地址
001 1
002 6
003 8
004 4
005 2
006 3
007 7
008 5
索引的优点:
可以大大加快数据检索速度。
通过创建唯一索引,可以保证数据记录的唯一性。
在使用ORDER BY和GROUP BY子句进行检索数据时,可以显着减少查询中分组和排序的时间。
可以加速表与表之间的连接,这一点在实现数据的参照完整性方面有特别的意义。
索引的代价:
索引需要占用额外的存储空间。
数据更新时,需要对索引进行额外的维护。