当前位置:首页 » 操作系统 » aes算法c

aes算法c

发布时间: 2022-05-20 10:35:59

1. AES算法支持192位明文么 c

支持。AES有128bit、192bit、256bit三种块大小

明文大小小于块大小时,需要自己决定填充补齐方法。比如PKCS7标准中定义的补齐方法。

2. 基于c语言的aes算法分析 基于c语言的aes.c算法分析(代码注释),vc++环境

blog.csdn.net-zycamym-article-details-45774767

-换斜杠就好了

3. 求AES算法加密C语言完整程序

恰好我有。能运行的,C语言的。

#include <string.h>
#include "aes.h"
#include "commonage.h"

#define byte unsigned char

#define BPOLY 0x1b //!< Lower 8 bits of (x^8+x^4+x^3+x+1), ie. (x^4+x^3+x+1).
#define BLOCKSIZE 16 //!< Block size in number of bytes.

#define KEYBITS 128 //!< Use AES128.
#define ROUNDS 10 //!< Number of rounds.
#define KEYLENGTH 16 //!< Key length in number of bytes.

byte xdata block1[ 256 ]; //!< Workspace 1.
byte xdata block2[ 256 ]; //!< Worksapce 2.

byte xdata * powTbl; //!< Final location of exponentiation lookup table.
byte xdata * logTbl; //!< Final location of logarithm lookup table.
byte xdata * sBox; //!< Final location of s-box.
byte xdata * sBoxInv; //!< Final location of inverse s-box.
byte xdata * expandedKey; //!< Final location of expanded key.

void CalcPowLog( byte * powTbl, byte * logTbl )
{
byte xdata i = 0;
byte xdata t = 1;

do {
// Use 0x03 as root for exponentiation and logarithms.
powTbl[i] = t;
logTbl[t] = i;
i++;

// Muliply t by 3 in GF(2^8).
t ^= (t << 1) ^ (t & 0x80 ? BPOLY : 0);
} while( t != 1 ); // Cyclic properties ensure that i < 255.

powTbl[255] = powTbl[0]; // 255 = '-0', 254 = -1, etc.
}

void CalcSBox( byte * sBox )
{
byte xdata i, rot;
byte xdata temp;
byte xdata result;

// Fill all entries of sBox[].
i = 0;
do {
// Inverse in GF(2^8).
if( i > 0 ) {
temp = powTbl[ 255 - logTbl[i] ];
} else {
temp = 0;
}

// Affine transformation in GF(2).
result = temp ^ 0x63; // Start with adding a vector in GF(2).
for( rot = 0; rot < 4; rot++ ) {
// Rotate left.
temp = (temp<<1) | (temp>>7);

// Add rotated byte in GF(2).
result ^= temp;
}

// Put result in table.
sBox[i] = result;
} while( ++i != 0 );
}

void CalcSBoxInv( byte * sBox, byte * sBoxInv )
{
byte xdata i = 0;
byte xdata j = 0;

// Iterate through all elements in sBoxInv using i.
do {
// Search through sBox using j.
cleardog();
do {
// Check if current j is the inverse of current i.
if( sBox[ j ] == i ) {
// If so, set sBoxInc and indicate search finished.
sBoxInv[ i ] = j;
j = 255;
}
} while( ++j != 0 );
} while( ++i != 0 );
}

void CycleLeft( byte * row )
{
// Cycle 4 bytes in an array left once.
byte xdata temp = row[0];
row[0] = row[1];
row[1] = row[2];
row[2] = row[3];
row[3] = temp;
}

void InvMixColumn( byte * column )
{
byte xdata r0, r1, r2, r3;

r0 = column[1] ^ column[2] ^ column[3];
r1 = column[0] ^ column[2] ^ column[3];
r2 = column[0] ^ column[1] ^ column[3];
r3 = column[0] ^ column[1] ^ column[2];

column[0] = (column[0] << 1) ^ (column[0] & 0x80 ? BPOLY : 0);
column[1] = (column[1] << 1) ^ (column[1] & 0x80 ? BPOLY : 0);
column[2] = (column[2] << 1) ^ (column[2] & 0x80 ? BPOLY : 0);
column[3] = (column[3] << 1) ^ (column[3] & 0x80 ? BPOLY : 0);

r0 ^= column[0] ^ column[1];
r1 ^= column[1] ^ column[2];
r2 ^= column[2] ^ column[3];
r3 ^= column[0] ^ column[3];

column[0] = (column[0] << 1) ^ (column[0] & 0x80 ? BPOLY : 0);
column[1] = (column[1] << 1) ^ (column[1] & 0x80 ? BPOLY : 0);
column[2] = (column[2] << 1) ^ (column[2] & 0x80 ? BPOLY : 0);
column[3] = (column[3] << 1) ^ (column[3] & 0x80 ? BPOLY : 0);

r0 ^= column[0] ^ column[2];
r1 ^= column[1] ^ column[3];
r2 ^= column[0] ^ column[2];
r3 ^= column[1] ^ column[3];

column[0] = (column[0] << 1) ^ (column[0] & 0x80 ? BPOLY : 0);
column[1] = (column[1] << 1) ^ (column[1] & 0x80 ? BPOLY : 0);
column[2] = (column[2] << 1) ^ (column[2] & 0x80 ? BPOLY : 0);
column[3] = (column[3] << 1) ^ (column[3] & 0x80 ? BPOLY : 0);

column[0] ^= column[1] ^ column[2] ^ column[3];
r0 ^= column[0];
r1 ^= column[0];
r2 ^= column[0];
r3 ^= column[0];

column[0] = r0;
column[1] = r1;
column[2] = r2;
column[3] = r3;
}

byte Multiply( unsigned char num, unsigned char factor )
{
byte mask = 1;
byte result = 0;

while( mask != 0 ) {
// Check bit of factor given by mask.
if( mask & factor ) {
// Add current multiple of num in GF(2).
result ^= num;
}

// Shift mask to indicate next bit.
mask <<= 1;

// Double num.
num = (num << 1) ^ (num & 0x80 ? BPOLY : 0);
}

return result;
}

byte DotProct( unsigned char * vector1, unsigned char * vector2 )
{
byte result = 0;

result ^= Multiply( *vector1++, *vector2++ );
result ^= Multiply( *vector1++, *vector2++ );
result ^= Multiply( *vector1++, *vector2++ );
result ^= Multiply( *vector1 , *vector2 );

return result;
}

void MixColumn( byte * column )
{
byte xdata row[8] = {
0x02, 0x03, 0x01, 0x01,
0x02, 0x03, 0x01, 0x01
}; // Prepare first row of matrix twice, to eliminate need for cycling.

byte xdata result[4];

// Take dot procts of each matrix row and the column vector.
result[0] = DotProct( row+0, column );
result[1] = DotProct( row+3, column );
result[2] = DotProct( row+2, column );
result[3] = DotProct( row+1, column );

// Copy temporary result to original column.
column[0] = result[0];
column[1] = result[1];
column[2] = result[2];
column[3] = result[3];
}

void SubBytes( byte * bytes, byte count )
{
do {
*bytes = sBox[ *bytes ]; // Substitute every byte in state.
bytes++;
} while( --count );
}

void InvSubBytesAndXOR( byte * bytes, byte * key, byte count )
{
do {
// *bytes = sBoxInv[ *bytes ] ^ *key; // Inverse substitute every byte in state and add key.
*bytes = block2[ *bytes ] ^ *key; // Use block2 directly. Increases speed.
bytes++;
key++;
} while( --count );
}

void InvShiftRows( byte * state )
{
byte temp;

// Note: State is arranged column by column.

// Cycle second row right one time.
temp = state[ 1 + 3*4 ];
state[ 1 + 3*4 ] = state[ 1 + 2*4 ];
state[ 1 + 2*4 ] = state[ 1 + 1*4 ];
state[ 1 + 1*4 ] = state[ 1 + 0*4 ];
state[ 1 + 0*4 ] = temp;

// Cycle third row right two times.
temp = state[ 2 + 0*4 ];
state[ 2 + 0*4 ] = state[ 2 + 2*4 ];
state[ 2 + 2*4 ] = temp;
temp = state[ 2 + 1*4 ];
state[ 2 + 1*4 ] = state[ 2 + 3*4 ];
state[ 2 + 3*4 ] = temp;

// Cycle fourth row right three times, ie. left once.
temp = state[ 3 + 0*4 ];
state[ 3 + 0*4 ] = state[ 3 + 1*4 ];
state[ 3 + 1*4 ] = state[ 3 + 2*4 ];
state[ 3 + 2*4 ] = state[ 3 + 3*4 ];
state[ 3 + 3*4 ] = temp;
}

void ShiftRows( byte * state )
{
byte temp;

// Note: State is arranged column by column.

// Cycle second row left one time.
temp = state[ 1 + 0*4 ];
state[ 1 + 0*4 ] = state[ 1 + 1*4 ];
state[ 1 + 1*4 ] = state[ 1 + 2*4 ];
state[ 1 + 2*4 ] = state[ 1 + 3*4 ];
state[ 1 + 3*4 ] = temp;

// Cycle third row left two times.
temp = state[ 2 + 0*4 ];
state[ 2 + 0*4 ] = state[ 2 + 2*4 ];
state[ 2 + 2*4 ] = temp;
temp = state[ 2 + 1*4 ];
state[ 2 + 1*4 ] = state[ 2 + 3*4 ];
state[ 2 + 3*4 ] = temp;

// Cycle fourth row left three times, ie. right once.
temp = state[ 3 + 3*4 ];
state[ 3 + 3*4 ] = state[ 3 + 2*4 ];
state[ 3 + 2*4 ] = state[ 3 + 1*4 ];
state[ 3 + 1*4 ] = state[ 3 + 0*4 ];
state[ 3 + 0*4 ] = temp;
}

void InvMixColumns( byte * state )
{
InvMixColumn( state + 0*4 );
InvMixColumn( state + 1*4 );
InvMixColumn( state + 2*4 );
InvMixColumn( state + 3*4 );
}

void MixColumns( byte * state )
{
MixColumn( state + 0*4 );
MixColumn( state + 1*4 );
MixColumn( state + 2*4 );
MixColumn( state + 3*4 );
}

void XORBytes( byte * bytes1, byte * bytes2, byte count )
{
do {
*bytes1 ^= *bytes2; // Add in GF(2), ie. XOR.
bytes1++;
bytes2++;
} while( --count );
}

void CopyBytes( byte * to, byte * from, byte count )
{
do {
*to = *from;
to++;
from++;
} while( --count );
}

void KeyExpansion( byte * expandedKey )
{
byte xdata temp[4];
byte i;
byte xdata Rcon[4] = { 0x01, 0x00, 0x00, 0x00 }; // Round constant.

unsigned char xdata *key;
unsigned char xdata a[16];
key=a;
//以下为加解密密码,共16字节。可以选择任意值
key[0]=0x30;
key[1]=0x30;
key[2]=0x30;
key[3]=0x30;
key[4]=0x30;
key[5]=0x30;
key[6]=0x30;
key[7]=0x30;
key[8]=0x30;
key[9]=0x30;
key[10]=0x30;
key[11]=0x30;
key[12]=0x30;
key[13]=0x30;
key[14]=0x30;
key[15]=0x30;
////////////////////////////////////////////

// Copy key to start of expanded key.
i = KEYLENGTH;
do {
*expandedKey = *key;
expandedKey++;
key++;
} while( --i );

// Prepare last 4 bytes of key in temp.
expandedKey -= 4;
temp[0] = *(expandedKey++);
temp[1] = *(expandedKey++);
temp[2] = *(expandedKey++);
temp[3] = *(expandedKey++);

// Expand key.
i = KEYLENGTH;
while( i < BLOCKSIZE*(ROUNDS+1) ) {
// Are we at the start of a multiple of the key size?
if( (i % KEYLENGTH) == 0 ) {
CycleLeft( temp ); // Cycle left once.
SubBytes( temp, 4 ); // Substitute each byte.
XORBytes( temp, Rcon, 4 ); // Add constant in GF(2).
*Rcon = (*Rcon << 1) ^ (*Rcon & 0x80 ? BPOLY : 0);
}

// Keysize larger than 24 bytes, ie. larger that 192 bits?
#if KEYLENGTH > 24
// Are we right past a block size?
else if( (i % KEYLENGTH) == BLOCKSIZE ) {
SubBytes( temp, 4 ); // Substitute each byte.
}
#endif

// Add bytes in GF(2) one KEYLENGTH away.
XORBytes( temp, expandedKey - KEYLENGTH, 4 );

// Copy result to current 4 bytes.
*(expandedKey++) = temp[ 0 ];
*(expandedKey++) = temp[ 1 ];
*(expandedKey++) = temp[ 2 ];
*(expandedKey++) = temp[ 3 ];

i += 4; // Next 4 bytes.
}
}

void InvCipher( byte * block, byte * expandedKey )
{
byte round = ROUNDS-1;
expandedKey += BLOCKSIZE * ROUNDS;

XORBytes( block, expandedKey, 16 );
expandedKey -= BLOCKSIZE;

do {
InvShiftRows( block );
InvSubBytesAndXOR( block, expandedKey, 16 );
expandedKey -= BLOCKSIZE;
InvMixColumns( block );
} while( --round );

InvShiftRows( block );
InvSubBytesAndXOR( block, expandedKey, 16 );
}

void Cipher( byte * block, byte * expandedKey ) //完成一个块(16字节,128bit)的加密
{
byte round = ROUNDS-1;

XORBytes( block, expandedKey, 16 );
expandedKey += BLOCKSIZE;

do {
SubBytes( block, 16 );
ShiftRows( block );
MixColumns( block );
XORBytes( block, expandedKey, 16 );
expandedKey += BLOCKSIZE;
} while( --round );

SubBytes( block, 16 );
ShiftRows( block );
XORBytes( block, expandedKey, 16 );
}

void aesInit( unsigned char * tempbuf )
{
powTbl = block1;
logTbl = block2;
CalcPowLog( powTbl, logTbl );

sBox = tempbuf;
CalcSBox( sBox );

expandedKey = block1; //至此block1用来存贮密码表
KeyExpansion( expandedKey );

sBoxInv = block2; // Must be block2. block2至此开始只用来存贮SBOXINV
CalcSBoxInv( sBox, sBoxInv );
}

//对一个16字节块解密,参数buffer是解密密缓存,chainBlock是要解密的块
void aesDecrypt( unsigned char * buffer, unsigned char * chainBlock )
{
//byte xdata temp[ BLOCKSIZE ];

//CopyBytes( temp, buffer, BLOCKSIZE );
CopyBytes(buffer,chainBlock,BLOCKSIZE);
InvCipher( buffer, expandedKey );
//XORBytes( buffer, chainBlock, BLOCKSIZE );
CopyBytes( chainBlock, buffer, BLOCKSIZE );
}

//对一个16字节块完成加密,参数buffer是加密缓存,chainBlock是要加密的块
void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock )
{
CopyBytes( buffer, chainBlock, BLOCKSIZE );
//XORBytes( buffer, chainBlock, BLOCKSIZE );
Cipher( buffer, expandedKey );
CopyBytes( chainBlock, buffer, BLOCKSIZE );
}

//加解密函数,参数为加解密标志,要加解密的数据缓存起始指针,要加解密的数据长度(如果解密运算,必须是16的整数倍。)
unsigned char aesBlockDecrypt(bit Direct,unsigned char *ChiperDataBuf,unsigned char DataLen)
{
unsigned char xdata i;
unsigned char xdata Blocks;
unsigned char xdata sBoxbuf[256];
unsigned char xdata tempbuf[16];
unsigned long int xdata OrignLen=0; //未加密数据的原始长度

if(Direct==0)
{
*((unsigned char *)&OrignLen+3)=ChiperDataBuf[0];
*((unsigned char *)&OrignLen+2)=ChiperDataBuf[1];
*((unsigned char *)&OrignLen+1)=ChiperDataBuf[2];
*((unsigned char *)&OrignLen)=ChiperDataBuf[3];
DataLen=DataLen-4;
}
else
{
memmove(ChiperDataBuf+4,ChiperDataBuf,DataLen);
OrignLen=DataLen;
ChiperDataBuf[0]=OrignLen;
ChiperDataBuf[1]=OrignLen>>8;
ChiperDataBuf[2]=OrignLen>>16;
ChiperDataBuf[3]=OrignLen>>24;
}
cleardog();
aesInit(sBoxbuf); //初始化
if(Direct==0) //解密
{
Blocks=DataLen/16;
for(i=0;i<Blocks;i++)
{
cleardog();
aesDecrypt(tempbuf,ChiperDataBuf+4+16*i);
}
memmove(ChiperDataBuf,ChiperDataBuf+4,OrignLen);
cleardog();
return(OrignLen);
}
else //加密
{
if(DataLen%16!=0)
{
Blocks=DataLen/16+1;
//memset(ChiperDataBuf+4+Blocks*16-(DataLen%16),0x00,DataLen%16); //不足16字节的块补零处理
}
else
{
Blocks=DataLen/16;
}

for(i=0;i<Blocks;i++)
{
cleardog();
aesEncrypt(tempbuf,ChiperDataBuf+4+16*i);
}
cleardog();
return(Blocks*16+4);
}

}

//#endif
以上是C文件。以下是头文件

#ifndef AES_H
#define AES_H

extern void aesInit( unsigned char * tempbuf );
extern void aesDecrypt(unsigned char *buffer, unsigned char *chainBlock);
extern void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock );

extern void aesInit( unsigned char * tempbuf );
extern void aesDecrypt( unsigned char * buffer, unsigned char * chainBlock );
extern void aesEncrypt( unsigned char * buffer, unsigned char * chainBlock );

extern unsigned char aesBlockDecrypt(bit Direct,unsigned char *ChiperDataBuf,unsigned char DataLen);

#endif // AES_H

这是我根据网上程序改写的。只支持128位加解密。没有使用占内存很多的查表法。故运算速度会稍慢。

4. aes加密算法C代码

完整的!
#include "stdio.h"
#include "memory.h"
#include "time.h"
#include "stdlib.h"

#define PLAIN_FILE_OPEN_ERROR -1
#define KEY_FILE_OPEN_ERROR -2
#define CIPHER_FILE_OPEN_ERROR -3
#define OK 1

typedef char ElemType;

/*初始置换表IP*/
int IP_Table[64] = { 57,49,41,33,25,17,9,1,
59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,
63,55,47,39,31,23,15,7,
56,48,40,32,24,16,8,0,
58,50,42,34,26,18,10,2,
60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6};
/*逆初始置换表IP^-1*/
int IP_1_Table[64] = {39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25,
32,0,40,8,48,16,56,24};

/*扩充置换表E*/
int E_Table[48] = {31, 0, 1, 2, 3, 4,
3, 4, 5, 6, 7, 8,
7, 8,9,10,11,12,
11,12,13,14,15,16,
15,16,17,18,19,20,
19,20,21,22,23,24,
23,24,25,26,27,28,
27,28,29,30,31, 0};

/*置换函数P*/
int P_Table[32] = {15,6,19,20,28,11,27,16,
0,14,22,25,4,17,30,9,
1,7,23,13,31,26,2,8,
18,12,29,5,21,10,3,24};

/*S盒*/
int S[8][4][16] =
/*S1*/
{{{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7},
{0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8},
{4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0},
{15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}},
/*S2*/
{{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10},
{3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5},
{0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},
{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}},
/*S3*/
{{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8},
{13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1},
{13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7},
{1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}},
/*S4*/
{{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15},
{13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9},
{10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4},
{3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}},
/*S5*/
{{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9},
{14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6},
{4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14},
{11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}},
/*S6*/
{{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},
{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8},
{9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6},
{4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}},
/*S7*/
{{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1},
{13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6},
{1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2},
{6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}},
/*S8*/
{{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7},
{1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2},
{7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8},
{2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}}};
/*置换选择1*/
int PC_1[56] = {56,48,40,32,24,16,8,
0,57,49,41,33,25,17,
9,1,58,50,42,34,26,
18,10,2,59,51,43,35,
62,54,46,38,30,22,14,
6,61,53,45,37,29,21,
13,5,60,52,44,36,28,
20,12,4,27,19,11,3};

/*置换选择2*/
int PC_2[48] = {13,16,10,23,0,4,2,27,
14,5,20,9,22,18,11,3,
25,7,15,6,26,19,12,1,
40,51,30,36,46,54,29,39,
50,44,32,46,43,48,38,55,
33,52,45,41,49,35,28,31};

/*对左移次数的规定*/
int MOVE_TIMES[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};

int ByteToBit(ElemType ch,ElemType bit[8]);
int BitToByte(ElemType bit[8],ElemType *ch);
int Char8ToBit64(ElemType ch[8],ElemType bit[64]);
int Bit64ToChar8(ElemType bit[64],ElemType ch[8]);
int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48]);
int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56]);
int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48]);
int DES_ROL(ElemType data[56], int time);
int DES_IP_Transform(ElemType data[64]);
int DES_IP_1_Transform(ElemType data[64]);
int DES_E_Transform(ElemType data[48]);
int DES_P_Transform(ElemType data[32]);
int DES_SBOX(ElemType data[48]);
int DES_XOR(ElemType R[48], ElemType L[48],int count);
int DES_Swap(ElemType left[32],ElemType right[32]);
int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8]);
int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48], ElemType plainBlock[8]);
int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile);
int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile);

/*字节转换成二进制*/
int ByteToBit(ElemType ch, ElemType bit[8]){
int cnt;
for(cnt = 0;cnt < 8; cnt++){
*(bit+cnt) = (ch>>cnt)&1;
}
return 0;
}

/*二进制转换成字节*/
int BitToByte(ElemType bit[8],ElemType *ch){
int cnt;
for(cnt = 0;cnt < 8; cnt++){
*ch |= *(bit + cnt)<<cnt;
}
return 0;
}

/*将长度为8的字符串转为二进制位串*/
int Char8ToBit64(ElemType ch[8],ElemType bit[64]){
int cnt;
for(cnt = 0; cnt < 8; cnt++){
ByteToBit(*(ch+cnt),bit+(cnt<<3));
}
return 0;
}

/*将二进制位串转为长度为8的字符串*/
int Bit64ToChar8(ElemType bit[64],ElemType ch[8]){
int cnt;
memset(ch,0,8);
for(cnt = 0; cnt < 8; cnt++){
BitToByte(bit+(cnt<<3),ch+cnt);
}
return 0;
}

/*生成子密钥*/
int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48]){
ElemType temp[56];
int cnt;
DES_PC1_Transform(key,temp);/*PC1置换*/
for(cnt = 0; cnt < 16; cnt++){/*16轮跌代,产生16个子密钥*/
DES_ROL(temp,MOVE_TIMES[cnt]);/*循环左移*/
DES_PC2_Transform(temp,subKeys[cnt]);/*PC2置换,产生子密钥*/
}
return 0;
}

/*密钥置换1*/
int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56]){
int cnt;
for(cnt = 0; cnt < 56; cnt++){
tempbts[cnt] = key[PC_1[cnt]];
}
return 0;
}

/*密钥置换2*/
int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48]){
int cnt;
for(cnt = 0; cnt < 48; cnt++){
tempbts[cnt] = key[PC_2[cnt]];
}
return 0;
}

/*循环左移*/
int DES_ROL(ElemType data[56], int time){
ElemType temp[56];

/*保存将要循环移动到右边的位*/
memcpy(temp,data,time);
memcpy(temp+time,data+28,time);

/*前28位移动*/
memcpy(data,data+time,28-time);
memcpy(data+28-time,temp,time);

/*后28位移动*/
memcpy(data+28,data+28+time,28-time);
memcpy(data+56-time,temp+time,time);

return 0;
}

/*IP置换*/
int DES_IP_Transform(ElemType data[64]){
int cnt;
ElemType temp[64];
for(cnt = 0; cnt < 64; cnt++){
temp[cnt] = data[IP_Table[cnt]];
}
memcpy(data,temp,64);
return 0;
}

/*IP逆置换*/
int DES_IP_1_Transform(ElemType data[64]){
int cnt;
ElemType temp[64];
for(cnt = 0; cnt < 64; cnt++){
temp[cnt] = data[IP_1_Table[cnt]];
}
memcpy(data,temp,64);
return 0;
}

/*扩展置换*/
int DES_E_Transform(ElemType data[48]){
int cnt;
ElemType temp[48];
for(cnt = 0; cnt < 48; cnt++){
temp[cnt] = data[E_Table[cnt]];
}
memcpy(data,temp,48);
return 0;
}

/*P置换*/
int DES_P_Transform(ElemType data[32]){
int cnt;
ElemType temp[32];
for(cnt = 0; cnt < 32; cnt++){
temp[cnt] = data[P_Table[cnt]];
}
memcpy(data,temp,32);
return 0;
}

/*异或*/
int DES_XOR(ElemType R[48], ElemType L[48] ,int count){
int cnt;
for(cnt = 0; cnt < count; cnt++){
R[cnt] ^= L[cnt];
}
return 0;
}

/*S盒置换*/
int DES_SBOX(ElemType data[48]){
int cnt;
int line,row,output;
int cur1,cur2;
for(cnt = 0; cnt < 8; cnt++){
cur1 = cnt*6;
cur2 = cnt<<2;

/*计算在S盒中的行与列*/
line = (data[cur1]<<1) + data[cur1+5];
row = (data[cur1+1]<<3) + (data[cur1+2]<<2)
+ (data[cur1+3]<<1) + data[cur1+4];
output = S[cnt][line][row];

/*化为2进制*/
data[cur2] = (output&0X08)>>3;
data[cur2+1] = (output&0X04)>>2;
data[cur2+2] = (output&0X02)>>1;
data[cur2+3] = output&0x01;
}
return 0;
}

/*交换*/
int DES_Swap(ElemType left[32], ElemType right[32]){
ElemType temp[32];
memcpy(temp,left,32);
memcpy(left,right,32);
memcpy(right,temp,32);
return 0;
}

/*加密单个分组*/
int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8]){
ElemType plainBits[64];
ElemType Right[48];
int cnt;

Char8ToBit64(plainBlock,plainBits);
/*初始置换(IP置换)*/
DES_IP_Transform(plainBits);

/*16轮迭代*/
for(cnt = 0; cnt < 16; cnt++){
memcpy(Right,plainBits+32,32);
/*将右半部分进行扩展置换,从32位扩展到48位*/
DES_E_Transform(Right);
/*将右半部分与子密钥进行异或操作*/
DES_XOR(Right,subKeys[cnt],48);
/*异或结果进入S盒,输出32位结果*/
DES_SBOX(Right);
/*P置换*/
DES_P_Transform(Right);
/*将明文左半部分与右半部分进行异或*/
DES_XOR(plainBits,Right,32);
if(cnt != 15){
/*最终完成左右部的交换*/
DES_Swap(plainBits,plainBits+32);
}
}
/*逆初始置换(IP^1置换)*/
DES_IP_1_Transform(plainBits);
Bit64ToChar8(plainBits,cipherBlock);
return 0;
}

/*解密单个分组*/
int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48],ElemType plainBlock[8]){
ElemType cipherBits[64];
ElemType Right[48];
int cnt;

Char8ToBit64(cipherBlock,cipherBits);
/*初始置换(IP置换)*/
DES_IP_Transform(cipherBits);

/*16轮迭代*/
for(cnt = 15; cnt >= 0; cnt--){
memcpy(Right,cipherBits+32,32);
/*将右半部分进行扩展置换,从32位扩展到48位*/
DES_E_Transform(Right);
/*将右半部分与子密钥进行异或操作*/
DES_XOR(Right,subKeys[cnt],48);
/*异或结果进入S盒,输出32位结果*/
DES_SBOX(Right);
/*P置换*/
DES_P_Transform(Right);
/*将明文左半部分与右半部分进行异或*/
DES_XOR(cipherBits,Right,32);
if(cnt != 0){
/*最终完成左右部的交换*/
DES_Swap(cipherBits,cipherBits+32);
}
}
/*逆初始置换(IP^1置换)*/
DES_IP_1_Transform(cipherBits);
Bit64ToChar8(cipherBits,plainBlock);
return 0;
}

/*加密文件*/
int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile){
FILE *plain,*cipher;
int count;
ElemType plainBlock[8],cipherBlock[8],keyBlock[8];
ElemType bKey[64];
ElemType subKeys[16][48];
if((plain = fopen(plainFile,"rb")) == NULL){
return PLAIN_FILE_OPEN_ERROR;
}
if((cipher = fopen(cipherFile,"wb")) == NULL){
return CIPHER_FILE_OPEN_ERROR;
}
/*设置密钥*/
memcpy(keyBlock,keyStr,8);
/*将密钥转换为二进制流*/
Char8ToBit64(keyBlock,bKey);
/*生成子密钥*/
DES_MakeSubKeys(bKey,subKeys);

while(!feof(plain)){
/*每次读8个字节,并返回成功读取的字节数*/
if((count = fread(plainBlock,sizeof(char),8,plain)) == 8){
DES_EncryptBlock(plainBlock,subKeys,cipherBlock);
fwrite(cipherBlock,sizeof(char),8,cipher);
}
}
if(count){
/*填充*/
memset(plainBlock + count,'\0',7 - count);
/*最后一个字符保存包括最后一个字符在内的所填充的字符数量*/
plainBlock[7] = 8 - count;
DES_EncryptBlock(plainBlock,subKeys,cipherBlock);
fwrite(cipherBlock,sizeof(char),8,cipher);
}
fclose(plain);
fclose(cipher);
return OK;
}

/*解密文件*/
int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile){
FILE *plain, *cipher;
int count,times = 0;
long fileLen;
ElemType plainBlock[8],cipherBlock[8],keyBlock[8];
ElemType bKey[64];
ElemType subKeys[16][48];
if((cipher = fopen(cipherFile,"rb")) == NULL){
return CIPHER_FILE_OPEN_ERROR;
}
if((plain = fopen(plainFile,"wb")) == NULL){
return PLAIN_FILE_OPEN_ERROR;
}

/*设置密钥*/
memcpy(keyBlock,keyStr,8);
/*将密钥转换为二进制流*/
Char8ToBit64(keyBlock,bKey);
/*生成子密钥*/
DES_MakeSubKeys(bKey,subKeys);

/*取文件长度 */
fseek(cipher,0,SEEK_END);/*将文件指针置尾*/
fileLen = ftell(cipher); /*取文件指针当前位置*/
rewind(cipher); /*将文件指针重指向文件头*/
while(1){
/*密文的字节数一定是8的整数倍*/
fread(cipherBlock,sizeof(char),8,cipher);
DES_DecryptBlock(cipherBlock,subKeys,plainBlock);
times += 8;
if(times < fileLen){
fwrite(plainBlock,sizeof(char),8,plain);
}
else{
break;
}
}
/*判断末尾是否被填充*/
if(plainBlock[7] < 8){
for(count = 8 - plainBlock[7]; count < 7; count++){
if(plainBlock[count] != '\0'){
break;
}
}
}
if(count == 7){/*有填充*/
fwrite(plainBlock,sizeof(char),8 - plainBlock[7],plain);
}
else{/*无填充*/
fwrite(plainBlock,sizeof(char),8,plain);
}

fclose(plain);
fclose(cipher);
return OK;
}

int main()
{
clock_t a,b;
a = clock();
DES_Encrypt("1.txt","key.txt","2.txt");
b = clock();
printf("加密消耗%d毫秒\n",b-a);

system("pause");
a = clock();
DES_Decrypt("2.txt","key.txt","3.txt");
b = clock();
printf("解密消耗%d毫秒\n",b-a);
getchar();
return 0;
}

5. 求AES加密算法 C代码

以前编过的,c++可以用的
#include <iostream>
using namespace std;
long gcd(long a, long b)
{
if(b>a) //a中存放较大的数,b中存放较小的数
{
int temp;
temp=a;
a=b;
b=temp;
}
long n;
while((n=a%b)!=0)
{
a=b;
b=n;
}
return b;
}
//---------------------------------------
long cheng_niyuan(long a, long b)
{
for(long i=1; (i*a)%b!=1; i++);
return i;
}
//---------------------------------------
int mi_mo(int a, int b, int n)
{
int K[100];
int top=-1;
while(b)
{
top++;
K[top]=(b%2);
b/=2;
}
int c=0, f=1;
for(; top>=0; top--)
{
c=2*c;
f=(f*f)%n;
if(K[top]==1)
{
c+=1;
f=(f*a)%n;
}
}
return f;
}
//---------------------------------------
int main()
{
int p=5,q=11;

cout<<"p="<<p<<endl;
cout<<"q="<<q<<endl;
long int n=p*q;
cout<<"n="<<n<<endl;
long int fi_n=(p-1)*(q-1);
cout<<"fi_n="<<fi_n<<endl;
int e=3;
cout<<"e="<<e<<endl;
long d=cheng_niyuan(e,fi_n);
int M, C;
cout<<"请输入明文:"<<endl;
cin>>M;
C=mi_mo(M, e, n);
cout<<"对应的密文为:"<<endl;
cout<<C<<endl;
cout<<"请输入密文:"<<endl;
cin>>C;
M=mi_mo(C, d, n);
cout<<"对应的明文为:"<<endl;
cout<<M<<endl;
return 0;
}

6. ASE加密算法,C语言实现

Rijdeal的AES算法吧?

实现:
#include"stdio.h"
typedef unsigned char word8;
typedef unsigned int word32;

word8 Logtable[256] =
{
0,0,25,1,50,2,26,198,75,199,27,104,51,238,223,3,100,4,
224,14,52,141,129,239,76,113,8,200,248,105,28,193,125,194,29,
181,249,185,39,106,77,228,166,114,154,201,9,120,101,47,138,
5,33,15,225,36,18,240,130,69,53,147,218,142,150,143,219,189,
54,208,206,148,19,92,210,241,64,70,131,56,102,221,253,48,
191,6,139,98,179,37,226,152,34,136,145,16,126,110,72,195,163,
182,30,66,58,107,40,84,250,133,61,186,43,121,10,21,155,159,
94,202,78,212,172,229,243,115,167,87,175,88,168,80,244,234,
214,116,79,174,233,213,231,230,173,232,44,215,117,122,235,
22,11,245,89,203,95,176,156,169,81,160,127,12,246,111,23,196,
73,236,216,67,31,45,164,118,123,183,204,187,62,90,251,96,
177,134,59,82,161,108,170,85,41,157,151,178,135,144,97,190,
220,252,188,149,207,205,55,63,91,209,83,57,132,60,65,162,109,
71,20,42,158,93,86,242,211,171,68,17,146,217,35,32,46,137,
180,124,184,38,119,153,227,165,103,74,237,222,197,49,254,
24,13,99,140,128,192,247,112,7,

};

word8 Alogtable[256]=
{
1,3,5,15,17,51,85,255,26,46,114,150,161,248,19,53,95,225,
56,72,216,115,149,164,247,2,6,10,30,34,102,170,229,52,92,
228,55,89,235,38,106,190,217,112,144,171,230,49,83,245,4,12,
20,60,68,204,79,209,104,184,211,110,178,205,76,212,103,169,
224,59,77,215,98,166,241,8,24,40,120,136,131,158,185,208,107,
189,220,127,129,152,179,206,73,219,118,154,181,196,87,249,
16,48,80,240,11,29,39,105,187,214,97,163,254,25,43,125,135,
146,173,236,47,113,147,174,233,32,96,160,251,22,58,78,210,
109,183,194,93,231,50,86,250,21,63,65,195,94,226,61,71,201,
64,192,91,237,44,116,156,191,218,117,159,186,213,100,172,239,
42,126,130,157,188,223,122,142,137,128,155,182,193,88,232,
35,101,175,234,37,111,177,200,67,197,84,252,31,33,99,165,
244,7,9,27,45,119,153,176,203,70,202,69,207,74,222,121,139,
134,145,168,227,62,66,198,81,243,14,18,54,90,238,41,123,141,
140,143,138,133,148,167,242,13,23,57,75,221,124,132,151,162,
253,28,36,108,199,82,246,1,
};

word8 S[256]=
{
99,124,119,123,242,107,111,197,48,1,103,43,254,215,171,
118,202,130,201,125,250,89,71,240,173,212,162,175,156,164,
114,192,183,253,147,38,54,63,247,204,52,165,229,241,113,216,
49,21,4,199,35,195,24,150,5,154,7,18,128,226,235,39,178,117,
9,131,44,26,27,110,90,160,82,59,214,179,41,227,47,132,83,209,
0,237,32,252,177,91,106,203,190,57,74,76,88,207,208,239,
170,251,67,77,51,133,69,249,2,127,80,60,159,168,81,163,64,143,
146,157,56,245,188,182,218,33,16,255,243,210,205,12,19,236,
95,151,68,23,196,167,126,61,100,93,25,115,96,129,79,220,
34,42,144,136,70,238,184,20,222,94,11,219,224,50,58,10,73,6,
36,92,194,211,172,98,145,149,228,121,231,200,55,109,141,213,
78,169,108,86,244,234,101,122,174,8,186,120,37,46,28,166,
180,198,232,221,116,31,75,189,139,138,112,62,181,102,72,3,246,
14,97,53,87,185,134,193,29,158,225,248,152,17,105,217,142,
148,155,30,135,233,206,85,40,223,140,161,137,13,191,230,66,
104,65,153,45,15,176,84,187,22,
};

word8 Si[256]=
{
82,9,106,213,48,54,165,56,191,64,163,158,129,243,215,251,
124,227,57,130,155,47,255,135,52,142,67,68,196,222,233,203,
84,123,148,50,166,194,35,61,238,76,149,11,66,250,195,78,8,
46,161,102,40,217,36,178,118,91,162,73,109,139,209,37,114,
248,246,100,134,104,152,22,212,164,92,204,93,101,182,146,108,
112,72,80,253,237,185,218,94,21,70,87,167,141,157,132,144,
216,171,0,140,188,211,10,247,228,88,5,184,179,69,6,208,44,
30,143,202,63,15,2,193,175,189,3,1,19,138,107,58,145,17,65,
79,103,220,234,151,242,207,206,240,180,230,115,150,172,116,
34,231,173,53,133,226,249,55,232,28,117,223,110,71,241,26,
113,29,41,197,137,111,183,98,14,170,24,190,27,252,86,62,75,
198,210,121,32,154,219,192,254,120,205,90,244,31,221,168,51,
136,7,199,49,177,18,16,89,39,128,236,95,96,81,127,169,25,181,
74,13,45,229,122,159,147,201,156,239,160,224,59,77,174,42,
245,176,200,235,187,60,131,83,153,97,23,43,4,126,186,119,
214,38,225,105,20,99,85,33,12,125,
};

word32 Rc[30]=
{
0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0x1B,0x36,
0x6C,0xD8,0xAB,0x4D,0x9A,0x2F,0x5E,0xBC,0x63,0x97,0x35,
0x6A,0xD4,0xB3,0x7D,0xFA,0xEF,0xC5
};

#define MAXBC 8
#define MAXKC 8
#define MAXROUNDS 14

static word8 shifts[5][4]={
0,1,2,3,
0,1,2,3,
0,1,2,3,
0,1,2,4,
0,1,3,4,};

static int numrounds[5][5]={
10,11,12,13,14,
11,11,12,13,14,
12,12,12,13,14,
13,13,13,13,14,
14,14,14,14,14,};

int BC,KC,ROUNDS;

word8 mul(word8 a, word8 b){
//multiply two elements of GF(256)
//required for MixColumns and InvMixColumns
if (a&&b) return Alogtable[(Logtable[a]+Logtable[b])%255];
else return 0;
}

void AddRoundKey(word8 a[4][MAXBC],word8 rk[4][MAXBC])
{
//XOR corresponding text input and round key input bytes
int i,j;
for(i=0;i<4;i++)
for(j=0;j<BC;j++)
a[i][j]^=rk[i][j];
}

void SubBytes(word8 a[4][MAXBC],word8 box[256]){
//replace every byte if the input by the byte at that place
//in the non-linear S-box
int i,j;
for(i=0;i<4;i++)
for(j=0;i<BC;j++)
a[i][j]=box[a[i][j]];
}

void ShiftRows(word8 a[4][MAXBC],word8 d){
//row 0 remains unchanged
//the other three rows are shifted a variable amount
word8 tmp[MAXBC];
int i,j;
if(d==0){
for(i=0;i<4;i++){
for(j=0;j<BC;j++)
tmp[j]=a[i][(j+shifts[BC-4][i])%BC];
for(j=0;j<BC;j++) a[i][j]=tmp[j];
}
}
else {
for (i=0;i<4;i++){
for(j=0;j<BC;j++)
tmp[j]=a[i][(BC+j-shifts[BC-4][i])%BC];
for(j=0;j<BC;j++)
a[i][j]=tmp[j];
}
}
}

int main()
{
return 0;
}

密码制作者Joan Daemen和Vincent Rijmen的书上看到的,版权归出版商和作者,转载请注明出处

7. 谁会用C语言实现AES算法,谢谢

1 AES加密、解密算法原理和AVR实现

AES是分组密钥,算法输入128位数据,密钥长度也是128位。用Nr表示对一个数据分组加密的轮数(加密轮数与密钥长度的关系如表1所列)。每一轮都需要一个与输入分组具有相同长度的扩展密钥Expandedkey(i)的参与。由于外部输入的加密密钥K长度有限,所以在算法中要用一个密钥扩展程序(Keyexpansion)把外部密钥K扩展成更长的比特串,以生成各轮的加密和解密密钥。

1.1圈变化
AES每一个圈变换由以下三个层组成:
非线性层——进行Subbyte变换;
线行混合层——进行ShiftRow和MixColumn运算;
密钥加层——进行AddRoundKey运算。

① Subbyte变换是作用在状态中每个字节上的一种非线性字节转换,可以通过计算出来的S盒进行映射。
Schange:
ldi zh,$01;将指针指向S盒的首地址
mov zl,r2;将要查找的数据作为指针低地址
ldtemp,z+;取出这个对应的数据
mov r2,temp;交换数据完成查表
.
.
.
ret

② ShiftRow是一个字节换位。它将状态中的行按照不同的偏移量进行循环移位,而这个偏移量也是根据Nb的不同而选择的[3]。
shiftrow:;这是一个字节换位的子程序
mov temp,r3;因为是4×4
mov r3,r7; r2 r6 r10 r14 r2 r6 r10 r14
mov r7,r11; r3 r7 r11 r15---r7 r11 r15 r3
mov r11,r15; r4 r8 r12 r17 r12 r17 r4 r8
mov r15,temp; r5 r9 r13 r18 r18 r5 r9 r13
mov temp,r4
mov temp1,r8
mov r4,r12
mov r8,r17
mov r12,temp
mov r17,temp1
mov temp,r18
mov r18,r13
mov r13,r9
mov r9,r5
mov r5,temp
ret

③ 在MixColumn变换中,把状态中的每一列看作GF(28)上的多项式a(x)与固定多项式c(x)相乘的结果。b(x)=c(x)*a(x)的系数这样计算:*运算不是普通的乘法运算,而是特殊的运算,即
b(x)=c(x)·a(x)(mod x4+1)
对于这个运算
b0=02。a0+03。a1+a2+a3
令xtime(a0)=02。a0
其中,符号“。”表示模一个八次不可约多项式的同余乘法[3]。
mov temp,a0;这是一个mixcolimn子程序
rcall xtime;调用xtime程序
mov a0,temp
mov temp,a1
rcall xtime
eor a0,a1
eor a0,temp
eor a0,a2
eor a0,a3;完成b(x)的计算
.
.
.
xtime:;这是一个子程序
ldi temp1,$1b
lsl temp
brcs next1;如果最高位是1,则转移
next: ret;否则什么也不变化
next1:eor temp,temp1
rjmp next

对于逆变化,其矩阵C要改变成相应的D,即b(x)=d(x)*a(x)。

④ 密钥加层运算(addround)是将圈密钥状态中的对应字节按位“异或”。

⑤ 根据线性变化的性质[1],解密运算是加密变化的逆变化。这里不再详细叙述。

1.2轮变化

对不同的分组长度,其对应的轮变化次数是不同的,如表1所列。

1.3密钥扩展
AES算法利用外部输入密钥K(密钥串的字数为Nk),通过密钥的扩展程序得到共计4(Nr+1)字的扩展密钥。它涉及如下三个模块:

① 位置变换(rotword)——把一个4字节的序列[A,B,C,D]变化成[B,C,D,A];

② S盒变换(subword)——对一个4字节进行S盒代替;

③ 变换Rcon[i]——Rcon[i]表示32位比特字[xi-1,00,00,00]。这里的x是(02),如
Rcon[1]=[01000000];Rcon[2]=[02000000];Rcon[3]=[04000000]……

扩展密钥的生成:扩展密钥的前Nk个字就是外部密钥K;以后的字W[[i]]等于它前一个字W[[i-1]]与前第Nk个字W[[i-Nk]]的“异或”,即W[[i]]=W[[i-1]]�W[[i- Nk]]。但是若i为Nk的倍数,则W[i]=W[i-Nk]�Subword(Rotword(W[[i-1]]))�Rcon[i/Nk]。

程序执行的时候,主要调用以上几个子程序,具体实现如下:
Keyexpansion:
rcall rotwoed
rcall subword
rcall Rcon
.
.
.

2 AES加密、解密算法的优化

由以上算法的流程中可以清楚地看到,整个算法中程序耗时最多的就是圈变化部分,因此对于算法的优化也就在此;而圈变化部分可以优化的也就是列变化。因为列变化是一个模乘同余规则。由于AES加密和解密是不对称的,如果不对其进行优化,会使算法的解密速度远远大于加密的速度[1]。

① 加密运算。对列变换(Mixcolumn)可以通过调用xtime子程序进行优化。

另一种有效的优化方法就是离线构造一个表格,即列变化表格。这样只要通过查表的方式就可以提高加密速度。

② 解密算法的优化。由于解密的列变换的系数分别是09、0E、0B和0D。在AVR单片机上实现以上的乘法显然是需要很多的时间,从而导致了解密的性能降低。

优化方法一:对列变化进行分解使倍乘次数降低。

仔细研究解密矩阵的系数,不难发现解密矩阵和加密矩阵有着一定的联系,即解密矩阵等于加密矩阵和一个矩阵的相乘。通过这样的联系,就可以对算法进行优化:

这样一来,只用几个简单的“异或”就可以实现列变化,使倍乘的次数降低,提高解密的速度。
优化方法二:构造表格。

同加密构造方法一样,可以构造四个表格T[ea]=e×a; T[9a]=9×a;T[9a]=9×a;T[ba]=b×a。这样一来,也只需要进行查表和简单的异或就可以完成解密的任务。虽然这种方法将增加额外的开销,但是它却是一种有效的方法。

3 AES加密与解密的实验仿真

根据以上实验步骤和优化方法得出表2、3所列实验结果。

设主密钥为:(128bit)。
加密明文:。
密文:。
解密密文:。
明文:。

总之,AES密码是一个非对称密码体制,它的解密要比加密复杂和费时。解密优化算法没有增加存储空间的基础上,以列变化为基础进行处理,程序比原始的要小,而且节约了时间。解密优化方法速度最快,效率最高,但要增加系统的存储空间,因此它的程序也是最大的一个
流程图省略 朋友参考吧

8. aes算法c语言实现

http://wenku..com/link?url=__-4vlYsYV62kNnt7l9SF3 这里很多,如果不是专门弄这个的很少会去研究的。

专门弄这个的人自己的代码很少给出来的。。

9. AES算法详尽分析及范例,最好是c或c++

密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,AES的基本要求是,采用对称分组密码体制,密钥长度的最少支持为128、192、256,分组长度128位,算法应易于各种硬件和软件实现。1998年NIST开始AES第一轮分析、测试和征集,共产生了15个候选算法。1999年3月完成了第二轮AES2的分析、测试。2000年10月2日美国政府正式宣布选中比利时密码学家Joan Daemen 和 Vincent Rijmen 提出的一种密码算法RIJNDAEL 作为 AES.
在应用方面,尽管DES在安全上是脆弱的,但由于快速DES芯片的大量生产,使得DES仍能暂时继续使用,为提高安全强度,通常使用独立密钥的三级DES。但是DES迟早要被AES代替。流密码体制较之分组密码在理论上成熟且安全,但未被列入下一代加密标准。
AES加密数据块和密钥长度可以是128比特、192比特、256比特中的任意一个。AES加密有很多轮的重复和变换。大致步骤如下:1、密钥扩展(KeyExpansion),2、初始轮(Initial Round),3、重复轮(Rounds),每一轮又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey,4、最终轮(Final Round),最终轮没有MixColumns。

10. c语言的AES加密算法

这个就比较麻烦了,AES还是比较难破译的,暴力破译就甭试了,还是想想别的非技术的办法吧。

热点内容
单片机编译器和驱动 发布:2025-01-13 13:31:33 浏览:439
tis服务器怎么进pe 发布:2025-01-13 13:31:02 浏览:276
android线程与线程通信 发布:2025-01-13 13:30:27 浏览:38
FTP服务器本地策略 发布:2025-01-13 13:20:47 浏览:485
地下城堡2挂机脚本 发布:2025-01-13 13:20:44 浏览:205
web云服务器配置 发布:2025-01-13 13:19:54 浏览:459
小康密码是多少 发布:2025-01-13 13:19:13 浏览:41
javafile类 发布:2025-01-13 13:19:08 浏览:83
c语言求逆 发布:2025-01-13 13:14:43 浏览:929
中控大屏怎么看配置 发布:2025-01-13 13:11:33 浏览:912