当前位置:首页 » 操作系统 » 广度优先算法和深度优先算法

广度优先算法和深度优先算法

发布时间: 2022-05-19 22:32:48

‘壹’ 状态空间盲目搜索算法中广度优先搜索和深度优先搜索的区别是什么

摘要 很明显的搜索策略不同,一个是深度,一个是广度^-^,这个大家都知道~

‘贰’ 深度优先遍历与广度优先遍历的区别

一、指代不同

1、深度优先遍历:是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。

2、广度优先遍历:系统地展开并检查图中的所有节点,以找寻结果。

二、特点不同

1、深度优先遍历:所有的搜索算法从其最终的算法实现上来看,都可以划分成两个部分──控制结构和产生系统。正如前面所说的,搜索算法简而言之就是穷举所有可能情况并找到合适的答案,所以最基本的问题就是罗列出所有可能的情况,这其实就是一种产生式系统。

2、广度优先遍历:并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

三、算法不同

1、深度优先遍历:把根节点压入栈中。每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。并把这个元素记为它下一级元素的前驱。找到所要找的元素时结束程序。如果遍历整个树还没有找到,结束程序。

2、广度优先遍历:把根节点放到队列的末尾。每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱。找到所要找的元素时结束程序。如果遍历整个树还没有找到,结束程序。

‘叁’ 深度优先搜索和广度优先搜索、A星算法三种算法的区别和联系

在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是 在解一个问题时,找到一条解题的过程可以从求解的开始到问题的结果(好象并不通俗哦)。由于求解问题的过程中分枝有很多,主要是求解过程中求解条件的不确 定性,不完备性造成的,使得求解的路径很多这就构成了一个图,我们说这个图就是状态空间。问题的求解实际上就是在这个图中找到一条路径可以从开始到结果。 这个寻找的过程就是状态空间搜索。 常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。深度优先是按照一定的顺序前查找完一个分支,再查找另一个分支,以至找到目标为止。这两种算法在数据结构书中都有描述,可以参看这些书得到更详细的解释。 前面说的广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。他的效率实在太低,甚至不可完成。在这里就要用到启发式搜索了。 启发中的估价是用估价函数表示的,如: f(n) = g(n) + h(n) 其中f(n) 是节点n的估价函数,g(n)实在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。在这里主要是h(n)体现了搜 索的启发信息,因为g(n)是已知的。如果说详细点,g(n)代表了搜索的广度的优先趋势。但是当h(n) >> g(n)时,可以省略g(n),而提高效率。这些就深了,不懂也不影响啦!我们继续看看何谓A*算法。 2、初识A*算法 启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的 策略不同。象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了 其他的节点,可能也把最好的节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点 (除非该节点是死节点),在每一步的估价中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么 A*算法又是一种什么样的算法呢?其实A*算法也是一种最好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空 间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A* 算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为: f'(n) = g'(n) + h'(n) 这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道 的,所以我们用前面的估价函数f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别 的重要)。可以证明应用这样的估价函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。哈。你懂了吗?肯定没 懂。接着看。 举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是。当然它是一种最臭的A*算法。 再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除 的节点就越多,估价函数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由 于实时性的问题,h(n)的信息越多,它的计算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这 里就有一个平衡的问题。可难了,这就看你的了! 好了我的话也说得差不多了,我想你肯定是一头的雾水了,其实这是写给懂A*算法的同志看的。哈哈。你还是找一本人工智能的书仔细看看吧!我这几百字是不足以将A*算法讲清楚的。只是起到抛砖引玉的作用希望大家热情参与吗。

‘肆’ 广度优先算法和深度优先算法哪个可以求无向图的所有连通分量,具体什么原理

你好,广度优先和深度优先都可以求出无向图的所有连通分量,他们的原理都是遍历,一个是先按广度进行遍历,另外一个是先按深度进行遍历。

‘伍’ 深度优先算法 和 宽度优先算法 的优缺点

1、深度优先算法占内存少但速度较慢,广度优先算法占内存多但速度较快,在距离和深度成正比的情况下能较快地求出最优解。
2、深度优先与广度优先的控制结构和产生系统很相似,唯一的区别在于对扩展节点选取上。由于其保留了所有的前继节点,所以在产生后继节点时可以去掉一部分重复的节点,从而提高了搜索效率。
3、这两种算法每次都扩展一个节点的所有子节点,而不同的是,深度优先下一次扩展的是本次扩展出来的子节点中的一个,而广度优先扩展的则是本次扩展的节点的兄弟点。在具体实现上为了提高效率,所以采用了不同的数据结构。

‘陆’ 数据结构题目,广度优先和深度优先

(一)深度优先搜索的特点是:

(1)从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种
各样的。
有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2-7、例题2-8;
有的搜索深度是有限制的,但达到目标的深度是不定的。
但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构
都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结
构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。
(2)深度优先搜索法有递归以及非递归两种设计方法。一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。当搜索深度较大时,如例题2-5、2-6。当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。
(3)深度优先搜索方法有广义和狭义两种理解。广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。而狭义的理解是,仅仅只保留全部产生结点的算法。本书取前一种广义的理解。
不保留全部结点的算法属于一般的回溯算法范畴。
保留全部结点的算法,
实际上是在数据库中产生一个结点之间的搜索树,
因此也属于图搜索算法的范畴。
(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。
(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。例如例题2-8得最优解为13,但第一个解却是17。如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。
二、广度优先搜索法的显着特点是:
(1)在产生新的子结点时,深度越小的结点越先得到扩展,即先产生它的子结点。为使算法便于实现,存放结点的数据库一般用队列的结构。
(2)无论问题性质如何不同,利用广度优先搜索法解题的基本算法是相同的,但数据库中每一结点内容,产生式规则,根据不同的问题,有不同的内容和结构,就是同一问题也可以有不同的表示方法。
(3)当结点到跟结点的费用(有的书称为耗散值)和结点的深度成正比时,特别是当每一结到根结点的费用等于深度时,用广度优先法得到的解是最优解,但如果不成正比,则得到的解不一定是最优解。这一类问题要求出最优解,一种方法是使用后面要介绍的其他方法求解,另外一种方法是改进前面深度(或广度)优先搜索算法:找到一个目标后,不是立即退出,而是记录下目标结点的路径和费用,如果有多个目标结点,就加以比较,留下较优的结点。把所有可能的路径
都搜索完后,才输出记录的最优路径。
(4)广度优先搜索算法,一般需要存储产生的所有结点,占的存储空间要比深度优先大得多,因此程序设计中,必须考虑溢出和节省内存空间得问题。
(5)比较深度优先和广度优先两种搜索法,广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索算法法要快些。
总之,一般情况下,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快,在距离和深度成正比的情况下能较快地求出最优解。因此在选择用哪种算法时,要综合考虑。决定取舍

‘柒’ 深度优先和广度优先 的区别 ,用法。

1、主体区别

深度优先搜索是一种在开发爬虫早期使用较多的方法。它的目的是要达到被搜索结构的叶结点(即那些不包含任何超链的HTML文件)。

宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。

2、算法区别

深度优先搜索是每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。并把这个元素记为它下一级元素的前驱,找到所要找的元素时结束程序。

广度优先搜索是每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。并把这个元素记为它下一级元素的前驱,找到所要找的元素时结束程序。

3、用法

广度优先属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

深度优先即在搜索其余的超链结果之前必须先完整地搜索单独的一条链。深度优先搜索沿着HTML文件上的超链走到不能再深入为止,然后返回到某一个HTML文件,再继续选择该HTML文件中的其他超链。

(7)广度优先算法和深度优先算法扩展阅读:

实际应用

BFS在求解最短路径或者最短步数上有很多的应用,应用最多的是在走迷宫上,单独写代码有点泛化,取来自九度1335闯迷宫一例说明,并给出C++/Java的具体实现。

在一个n*n的矩阵里走,从原点(0,0)开始走到终点(n-1,n-1),只能上下左右4个方向走,只能在给定的矩阵里走,求最短步数。n*n是01矩阵,0代表该格子没有障碍,为1表示有障碍物。

int mazeArr[maxn][maxn]; //表示的是01矩阵int stepArr = {{-1,0},{1,0},{0,-1},{0,1}}; //表示上下左右4个方向,int visit[maxn][maxn]; //表示该点是否被访问过,防止回溯,回溯很耗时。核心代码。基本上所有的BFS问题都可以使用类似的代码来解决。

‘捌’ 深度优先搜索和广度优先搜索的区别。 请讲的详细点,最好能用例子,谢谢啦

深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。在深度优先搜索中,对于最新发现的结点,如果它还有以此为起点而未搜过的边,就沿着边继续搜索下去。当结点v的所有边都已被探寻过,搜索将回溯到发现结点v有那条边的始结点。这一过程一直进行到已发现从源结点可达的所有结点为止。如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个过程反复进行直到所有结点都被发现为止。

深度优先搜索基本算法如下{递归算法}:
PROCEDURE dfs_try(i);
FOR i:=1 to maxr DO
BEGIN
IF 子结点 mr 符合条件 THEN
BEGIN
产生的子结点mr入栈;
IF 子结点mr是目标结点
THEN 输出
ELSE dfs_try(i+1);
栈顶元素出栈;
END;
END; 宽度优先搜索算法(又称广度优先搜索算法)是最简单的图的搜索算法之一,这一算法也是很多重要的图的算法的原型。Dijksta单源最短路径算法和Prim最小生成树算法都采用了与宽度优先搜索类似的思想。
宽度优先搜索的核心思想是:从初始结点开始,应用算符生成第一层结点,检查目标结点是否在这些后继结点中,若没有,再用产生式规则将所有第一层的结点逐一扩展,得到第二层结点,并逐一检查第二层结点中是否包含目标结点。若没有,再用算符逐一扩展第二层所有结点……,如此依次扩展,直到发现目标结点为止。

宽度优先搜索基本算法如下:
list[1]:=source; {加入初始结点,list为待扩展结点的表}
head:=0; {队首指针}
foot:=1; {队尾指针}
REPEAT
head:=head+1;
FOR x:=1 to 规则数 DO
BEGIN
根据规则产生新结点nw;
IF not_appear(nw,list) THEN {若新结点队列中不存在,则加到队尾}
BEGIN
foot:=foot+1;
list[foot]:=nw;
list[foot].father:=head;
IF list[foot]=目标结点 THEN 输出;
END;
END;
UNTIL head>foot; {队列为空表明再无结点可扩展}
望采纳

‘玖’ 怎样理解深度优先算法和广度优先算法

胡说八道.... 深度优先:前序遍历 广度优先:按层遍历

热点内容
谷能压缩机 发布:2025-01-13 15:44:30 浏览:412
电脑电脑直连通讯ftp 发布:2025-01-13 15:38:03 浏览:717
nvm存储 发布:2025-01-13 15:36:19 浏览:552
京东架构师缓存经验 发布:2025-01-13 15:33:00 浏览:726
android图片颜色 发布:2025-01-13 15:26:09 浏览:268
国家税务总局电脑服务器 发布:2025-01-13 15:10:24 浏览:596
金立老款机的开机密码是多少 发布:2025-01-13 15:04:45 浏览:456
湖南网上办税初始密码多少 发布:2025-01-13 15:02:49 浏览:417
怎么使用笔记本连接服务器 发布:2025-01-13 15:02:48 浏览:705
长城cs75plus选哪个配置 发布:2025-01-13 14:54:05 浏览:22