当前位置:首页 » 操作系统 » 数据变异算法

数据变异算法

发布时间: 2022-05-16 14:13:33

⑴ 分析化学中变异系数怎么算

分析化学中变异系数(cv),就是 相对标准偏差。
具体算法要点是:
1)有一组数据,例如,n=6个数据。按照公式,计算出其算术平均值(D),和标准偏差s 值;
2)计算变异系数:cv=s/D x100%

⑵ 遗传算法的基本原理

遗传算法的基本原理和方法

一、编码

编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。

解码(译码):遗传算法解空间向问题空间的转换。

二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。

格雷码(Gray Code):在相邻整数之间汉明距离都为1。

(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。

二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。

动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。

编码方法:

1、 二进制编码方法

缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则

2、 格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。

3、 浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。

4、 各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。

5、 多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。

评估编码的三个规范:完备性、健全性、非冗余性。

二、选择

遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。

常用的选择算子:

1、 轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。

2、 随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。

3、 最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。

4、 无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下

(1) 计算群体中每个个体在下一代群体中的生存期望数目N。

(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。

(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。

5、 确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:

(1) 计算群体中各个个体在下一代群体中的期望生存数目N。

(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。

(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。

6、无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。

7、均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。

8、最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。

9、随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。

10、排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。

三、交叉

遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。

适用于二进制编码个体或浮点数编码个体的交叉算子:

1、单点交叉(One-pointCrossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。

2、两点交叉与多点交叉:

(1) 两点交叉(Two-pointCrossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。

(2) 多点交叉(Multi-pointCrossover)

3、均匀交叉(也称一致交叉,UniformCrossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两个新个体。

4、算术交叉(ArithmeticCrossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。

四、变异

遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成以给新的个体。

以下变异算子适用于二进制编码和浮点数编码的个体:

1、基本位变异(SimpleMutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。

2、均匀变异(UniformMutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)

3、边界变异(BoundaryMutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。

4、非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。

5、高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P2的正态分布的一个随机数来替换原有的基因值。

⑶ 变异系数计算公式是什么

变异系数的计算公式为:变异系数 C·V =( 标准偏差 SD / 平均值Mean )× 100%变异系数只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。

⑷ SPSS 中变异系数如何计算

变异系数的计算公式为:变异系数
C·V
=(
标准偏差
SD
/
平均值Mean
)×
100%。
变异系数(coefficient
of
variation)只在平均值不为零时有定义,而且一般适用于平均值大于零的情况。变异系数也被称为标准离差率或单位风险。
变异系数只对由比率标量计算出来的数值有意义。举例来说,对于一个气温的分布,使用开尔文或摄氏度来计算的话并不会改变标准差的值,但是温度的平均值会改变,因此使用不同的温标的话得出的变异系数是不同的。也就是说,使用区间标量得到的变异系数是没有意义的。
(4)数据变异算法扩展阅读
变异系数在概率论的许多分支中都有应用,比如说在更新理论、排队理论和可靠性理论中。在这些理论中,指数分布通常比正态分布更为常见。
由于指数分布的标准差等于其平均值,所以它的变异系数等于一。变异系数小于一的分布,比如爱尔朗分布称为低差别的,而变异系数大于一的分布,如超指数分布则被称为高差别的。
参考资料来源:网络-变异系数

⑸ 数据分析有哪些手段

1.分类


分类是一种基本的数据分析方式,数据根据其特点,可将数据对象划分为不同的部分和类型,再进一步分析,能够进一步挖掘事物的本质。


2.回归


回归是一种运用广泛的统计分析方法,可以通过规定因变量和自变量来确定变量之间的因果关系,然后建立回归模型,并且根据实测数据来求解模型的各个参数,之后再评价回归模型是否可以拟合实测数据,如果能够很好的拟合,则可以根据自变量作进一步预测。


3.聚类


聚类是根据数据的内在性质将数据分成一些聚合类,每一聚合类中的元素尽可能具有相同的特性,不同聚合类之间的特性差别尽可能大的一种分类方式,其与分类分析不同,所划分的类是未知的,因此,聚类分析也称为无指导或无监督的学习。


4.相似匹配


相似匹配是通过一定的方法,来计算两个数据的相似程度,相似程度通常会用一个是百分比来衡量。相似匹配算法被用在很多不同的计算场景,如数据清洗、用户输入纠错、推荐统计、剽窃检测系统、自动评分系统、网页搜索和DNA序列匹配等领域。


5.频繁项集


频繁项集是指事例中频繁出现的项的集合,如啤酒和尿不湿,Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集,目前已被广泛的应用在商业、网络安全等领域。


6.统计描述


统计描述是根据数据的特点,用一定的统计指标和指标体系,表明数据所反馈的信息,是对数据分析的基础处理工作,主要方法包括:平均指标和变异指标的计算、资料分布形态的图形表现等。

⑹ 统计检验中的变异数是什么意思

统计检验中的变异数是是概率分布离散程度的一个归一化量度,其定义为标准差与平均值之比。

当需要比较两组数据离散程度大小的时候,如果两组数据的测量尺度相差太大,或者数据量纲的不同,直接使用标准差来进行比较不合适,此时就应当消除测量尺度和量纲的影响,而变异系数可以做到这一点,它是原始数据标准差与原始数据平均数的比。

没有量纲,这样就可以进行客观比较了。事实上,可以认为变异系数和极差、标准差和方差一样,都是反映数据离散程度的绝对值。其数据大小不仅受变量值离散程度的影响,而且还受变量值平均水平大小的影响。

(6)数据变异算法扩展阅读

变异系数的计算公式为:变异系数 C·V =( 标准偏差 SD / 平均值Mean )× 100%

在进行数据统计分析时,如果变异系数大于15%,则要考虑该数据可能不正常,应该剔除。

比起标准差来,变异系数的好处是不需要参照数据的平均值。变异系数是一个无量纲量,因此在比较两组量纲不同或均值不同的数据时,应该用变异系数而不是标准差来作为比较的参考。

变异系数在概率论的许多分支中都有应用,比如说在更新理论、排队理论和可靠性理论中。在这些理论中,指数分布通常比正态分布更为常见。

由于指数分布的标准差等于其平均值,所以它的变异系数等于一。变异系数小于一的分布,比如爱尔朗分布称为低差别的,而变异系数大于一的分布,如超指数分布则被称为高差别的。

⑺ 统计分析学习之数值分析方法

统计分析学习之数值分析方法
最近补了一些统计学的知识,大多都在这些年的学习中接触过,这里做个总结,以便回头方便看。
从以下几个方面对数值进行分析:
数值的位置
平均数与中位数
这个最常见的就是平均值和中位数了,平均值指的是数据在数值上的中心位置,是所有数和的平均,而中位数是一个样本序列在数值上的中间,序列长度为奇数是,中位数就是最中间的那个。我们可以吧平均数理解为样本序列在数学上的中间位置,把中位数理解为样本序列在物理上的中间位置。
加权平均数
权值对于学过算法或者图论的小伙伴都不陌生,权值不同则认为每个数据的权值(可以简单理解为重要性)不同,在上边提到的平均数中是认为每个数的权值相同。那加权平均数就是求平均时对每个数值乘上了他的权值。
ps,加权的样本序列就比普通的样本序列多了一维的信息量。
几何平均数
这是个很有意思的平均数,在之前并没有接触过,它是n个数值乘积的n次方根,既然是几何平均数,那小伙伴们可以把它放在欧几里得空间来理解它的意义。
众数
样本序列中出现次数最多的数,这个在一些基本算法的面试题中经常出现,比如怎么在海量数据中找出重复次数最多的一个?(这个主要是采用分而治之的思想,外加hash等方法,有兴趣的可以网络一下)
四分位数
四分位数是百分位数的一种特殊情况,但是这个数值的位置具有比较高的工程使用价值,在统计分析中出现频率很高,比如后边用到的箱形分析法等跟此关系很大。
数值的离散程度
数据的离散程度也可以成为数据的变异程度,学过聚类算法的小伙伴说离散程度应该比变异程度更容易理解一些。有极差、四分位数间距、方差、标准差等指标(MAE、MSE等指标对机器学习的小伙伴应该都不陌生)。这个变异程度可以放在欧几里得几何空间来理解,都是描述数值之间分散的程度。注意:1.极值是最容易计算的,但是它比较容易受到异常值影响,单独计算时的工程意义并不大。2.四分位数间距能很好的避免异常值影响,甚至能进一步的检测异常值。(箱形法)
3.样本方差是总体方差的无偏估计,标准差是方差的正平方根。
分布形态和相对位置
偏度
偏度是分布形态的最常用度量。偏度的计算公式这里就不贴出来了,也可以通过平均数和中位数的关系来判断偏度。其关系如下所示:偏度为正值 = 数据右偏 = (平均数>中位数)偏度为0 = 数据对称 = (平均数=中位数)
偏度为负值 = 数据左偏 = (平均数<中位数)
切比雪夫定理
学概率论的时候都接触过这个,这里就不做过多解释。他能帮我们指出与平均数的距离在某个特定个数的标准差之内的数据值所占的比例。(与平均数的距离在z个标准差之内的数据项所占比例至少为(1-1/z^2),其中z是大于1的任何实数)。
异常点的检测
异常点也成为离群点(outlier),对于机器学习的小伙伴也不陌生,在统计工程上常用的方法有简单的统计量分析,比如最大值最小值是否超出合理的范围,还有就是比较经典的箱形法。
以上方法是基于统计的方法,其在多维数据上表现的很无力。除此之外还有基于位置,基于偏差和基于密度的方法。还有一些比较新的论文,是基于信息熵(Correntropy)和深度学习的异常点检测算法。有兴趣的小伙伴可以下一些论文看看。

⑻ 数据挖掘技术在客户关系管理中的应用

数据挖掘技术在客户关系管理中的应用

随着计算机技术、网络技术、通讯技术和Internet技术的发展,电子商务中 企业内部会产生了大量业务数据,如何从丰富的客户数据中挖掘有价值的信息,为企业管理者提供有效的辅助决策,是企业真正关心的问题。其中,客户分类是分析 型客户关系管理的重要功能之一。通过客户分类,区分客户的霞要程度,并针对不同霞要级别的客户制定专门的营销方案和客户关系管理策略,可以帮助企业降低营 销成本,提高利润和企业竞争力。客户也可从食业制定的专门的营销方案和客户关系管理策略中获得适合的交易体验。数据挖掘是分析型CRM实现其“分析”功能 的必要手段,也是实现客户分类的有效工具。
1 客户关系管理(CRM)
CRM(Customer Relation Managemen)是一种旨在改善企业与客户之间关系的新型管理机制,它实施于企业的市场营销、销售、服务与技术支持等领域,它的目标是提供更优质、更快捷的服务吸引并保持客户,通过业务流程的全面管理降低仓业成本。
在电子商务环 境下,CRM使网站企业在所有的业务环节下更好地满足客户需求以及提供更优质的服务,从而使站点企业在这种不存在时空差异的新型商务环境中保留现有客户和 发掘潜在客户。以提高市场竞争力。同时CRM又可以提供客户需求、市场分布、回馈信息等重要信息,为企业和经营活动提供智能化分析的依据,因此,CRM为 企业带来了成功实现电子商务的基础。
个性化服务是增强竞争力的有力武器,CRM就是以客户为中心并为客户提供最合适的服务。互联网成为 实施客户关系管理应用的理想渠道,记住顾客的名字及他们的偏好,根据顾客的不同而提供不同内容,顾客再次光顾的可能性会大大增加。CRM可以增加客户忠诚 度,提高购买比率,使每个顾客产生更多的购买需求,及更长时间的需求,并提高顾客满意度。
2 数据挖掘技术
如何对这些海量的数据进行分析发现,为商业决策提供有价值的信息,使企业获得利润,强有力的工具就是数据挖掘。
在分析型CRM系统中,数据挖掘是其中的核心技术,数据挖掘是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。对于企业而言,数据挖掘 可以有助于发现业务发展的趋势,揭示已知的事实,预测未知的结果,并帮助企业分析出完成任务所需的关键因素,以达到增加收入、降低成本,使企业处于更有利 的竞争位置的目的。
2.1 数据挖掘常用的算法
(1)决策树(decision tree)决策算法。决策树是一个类似于流程图的树结构。其中每个内部节点表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点代表类或类 分布。决策树算法包括树的构造和树的剪枝,有两种常用的剪枝方法:先剪枝和后剪枝。
(2)神经网络(Neural Network)。神经网络是一组连接的输入,输出单元,其中每个连接都与一个权相连,在学习阶段,通过调整神经网络的权,使得能够预测输入样本的正确类标号来学习。
(3)遗传算法(Genetic Algorithms)。遗传算法根据适者生存的原则,形成由当前群体巾最适合的规则组成新的群体,以及这些规则的后代。遗传算法用于分类和其他优化问题。
(4)粗糙集方法。粗糙集方法基于给定训练数据内部的等价类的建立。它将知识理解为对数据的划分,每一被划分的集合称为概念,利用已知的知识库来处理或刻臧不精确或不确定的知识。粗糙集用于特征归约和相关分析。
(5)模糊集方法。基于规则的分类系统有一个缺点:对于连续属性,他们有陡峭的截断。将模糊逻辑引入,允许定义“模糊”边界,提供了在高抽象层处理的便利。
其它还有贝叶斯网络、可视化技术、临近搜索方法和公式发现等方法。
2.2 数据挖掘常用的分析方法
(1)分类和预测。主要用于客户细分(分群)处理,如价值客户群的分级,分类和预测是两种数据分析形式,可以用于提取描述重要数据类的模型或预测未来的 数姑趋势。数据分类(data elassfication)是一个两步过程,第一步,建立一个模型,描述预定的数据类集或概念集,通过分析有属性描述的数据库元组来构造模型。第二步, 使用模型进行分类。首先评估模犁的预测准确率,如果认为模型的准确率可以接受,就可以用来对类标号未知的数据远祖或对象进行分类。
预测 技术,主要用于对客户未来行为的发现,如客户流失分析中,用神经元网络方法学习各种客户流失前的行为变化,进而预测(预警)可能出现的存价值客户的流失。 预测足构造和使用模型评估无标号样本类,或评估给定样本可能具有的属性值或值区间。分类和预测具有广泛的应用,如信誉证实、医疗诊断、性能预测和选择购 物。分类和预测常用的算法包括决策树归纳、贝叶斯分类、贝叶斯网络、神经网络、K-最临近分类、遗传算法、粗糙集和模糊集技术。
(2) 聚类分析。聚类是将数据对象分组成为多个类或簇(cluster),在同一个簇中的对象之同具有较高的相似度,而不周簇中的对象差别较大。作为统计学的一 个分支,聚类分析已被广泛的研究了许多年,现在主要集中在基于距离的聚类分析,基于k-means(k-平均值)、k-medoids(k-中心点)和其 他的一些聚类分析工具也有不少的应用。
(3)关联规则。关联规则挖掘给定数据集中项之间的有趣联系。设I={i1,i2,…im}是项 的集合,任务相关的数据D是数据库事务的集合,其中每个事务T是项的集合,使得T包含于I。关联规则是形如A=>B的蕴涵式,其中A∈I,B∈I, 并且A∩B为空。关联规则的挖掘分成两步:①找出所有频繁项集,这些项集出现的频繁性至少和预定义的最小支持计数一样。②由频繁项集产生强关联规则。这些 规则必须满足最小支持度和最小置信度。
(4)序列模式。序列模式分析和关联规则分析类似,也是为了挖掘数据项之间的联系,不过序列模式分析的是数据项在时间维上的先后序列关系,如一个顾客在购买了计算机半年后可能再购买财务分析软件。
(5)孤立点分析。孤立点是度量错误或固有的数据变异性的结果。许多数据挖掘算法都试图使孤立点的影响最小,或排除它们。一个人的噪声可能是另一个人的 信号,在有些时候。孤立点是非常有用的。孤立点挖掘可以描述如下:给定一个n个数据点或对象的集合,以及预期的孤立点的数目k,发现与剩余的数据相比是显 着相异的或不一致的头k个对象。孤立点探测方法可分为三类:统计学方法,基于距离的方法和基于偏移的方法。
3 应用方法
3.1 了解业务
最初的阶段,着眼于了解业务特点,并把它还原成为数据分析的条件和参数。例如:在零售行业中,我们的第一个步骤是了解客户购买的频率,购买频率和每次消费金额之间是否有明显的相关关系。
3.2 分析数据
这个阶段着眼于对现有的数据进行规整。我们发现,在不少行业中,可分析的数据和前面提出的分析目标是不匹配的。例如:消费者的月收入水平可能与许多购买 行为相关,但是,原始的数据积累中却不一定具备这螳数据。对这一问题的解决方法是从其它的相关数据中进行推理,例如,通过抽样调查,我们发现,一次性购买 大量卫生纸的客户,其月收入水平集中在1000-3000RMB的档次,如果这一结论基本成立。我们可以从消费习惯中推理出现有客户有多大的百分比是月收 入水平在这个档次中的;另外,可以根据抽样调查的方法。在问卷调查的基础上推理整个样本人群的收入水平曲线。
3.3 数据准备
这个阶段的着眼点是转换、清理和导入数据,可能从多个数据源抽取并加以组合,以形成data cube。对于缺失的少量数据,是用均值补齐,还是忽略,还是按照现有样本分配,这是在这个阶段需要处理的问题之一。
3.4 建模
现在已经有各种各样的模型方法可以利用。让最好的一种应用于我们要着眼的主要问题中。是这个阶段的主要任务。例如,对于利润的预测是否应当采用回归方式预测,预测的基础是什么等,这些问题需要行业专家和数据分析专家协商并达成共识。
3.5 评估与应用
优秀的评估方法是利用不同的时间段,让系统对已经发生的消费情况进行预测,然后比较预测结果和实际状况,这样模型的评估就容易进行了。完成了上述的步骤 之后,多数的分析工具都支持保存并重复应用已经建立起来的模型。更为重要的是,在这个过程中,对数据分析的方法和知识应当已经由客户方的市场分析人员或决 策者所了解,我们提供的,不仅仅是最终结果,而且是获得这一结果的方法。“要把金针度与人”正是TurboCRM咨询服务不同于单纯的软件提供商的区别所 在。
最后,在软件架构方面,分析数据库与运营数据库应当是分离的,避免影响运营数据库在操作方面的的实时响应速度。
4 结束语
数据挖掘可以把大量的客户分成不同的类,在每个类里的客户拥有相似的属性,而不同类里的客户的属性也不同,可以给这两类客户提供完全不同的服务来提高客户的满意度,细致而切实可行的客户分类对企业的经营策略有很大益处。

⑼ 偏差的计算公式

偏差的计算公式如下:

偏差是指某一尺寸(实际尺寸,极限尺寸,等等)减其基本尺寸所得的代数差。 尺寸偏差:某一尺寸减其基本尺寸所得的代数差,称为尺寸偏差,简称偏差。 基本偏差用拉丁字母表示。大写字母代表孔,小写字母代表轴。当公差带在零线上方时,基本偏差为下偏差;当公差带在零线下方时,基本偏差为上偏差。

实际偏差=实际尺寸一基本尺寸

最大极限尺寸减其基本尺寸所得的代数差,称为上偏差;最小极限尺寸减其基本尺寸所得的代数差,称为下偏差。上偏差和下偏差统称为极限偏差。国家标准规定,孔的上偏差代号为ES,轴的上偏差代号为es,孔的下偏差代号为EI,轴的下偏差代号为ei。则:

ES=孔的最大极限尺-孔的基本尺寸

cs=轴的最大极限尺寸-轴的基本尺寸

EI=孔的最小极限尺寸-孔的基本尺寸

ei=轴的最小极限尺寸-轴的奥基本尺寸

偏差值可以为正、负或零值。

拓展资料:

平均偏差是指单项测定值与平均值的偏差(取绝对值)之和,除以测定次数。

相对标准偏差是指标准偏差占平均值的百分率。平均偏差和相对平均偏差都是正值。

标准偏差,统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。

⑽ 遗传算法的变异率问题

应该是后者.
因为这是从120*101的染色体中任取一个染色体,那么就有0.01*120*101个.

热点内容
linux的路径怎么写 发布:2025-01-15 17:18:49 浏览:185
php解压程序 发布:2025-01-15 17:06:22 浏览:142
刷助力脚本 发布:2025-01-15 17:02:31 浏览:520
c盘里的用户文件夹可以删除 发布:2025-01-15 16:56:45 浏览:951
虚幻4编译到哪里 发布:2025-01-15 16:50:19 浏览:756
透明度渐变android 发布:2025-01-15 16:45:08 浏览:835
dos连接oracle数据库 发布:2025-01-15 16:41:39 浏览:906
网络配置比较低怎么做 发布:2025-01-15 16:35:38 浏览:362
android弹出键盘监听 发布:2025-01-15 16:35:11 浏览:208
uz画图编程 发布:2025-01-15 16:32:44 浏览:884