当前位置:首页 » 操作系统 » 列存数据库

列存数据库

发布时间: 2022-05-15 09:27:53

⑴ 列式数据库的优缺点

优点:
极高的装载速度
(最高可以等于所有硬盘IO
的总和,基本是极限了)
适合大量的数据而不是小数据
实时加载数据仅限于增加(删除和更新需要解压缩Block
然后计算然后重新压缩储存)
高效的压缩率,不仅节省储存空间也节省计算内存和CPU。
非常适合做聚合操作。
缺点:
不适合扫描小量数据
不适合随机的更新
批量更新情况各异,有的优化的比较好的列式数据库(比如Vertica)表现比较好,有些没有针对更新的数据库表现比较差。
不适合做含有删除和更新的实时操作。

⑵ 为什么说HBase是列式数据库

Hbase是一个面向列存储的分布式存储系统,它的优点在于可以实现高性能的并发读写操作,同时Hbase还会对数据进行透明的切分,这样就使得存储本身具有了水平伸缩性。

通常,顺序读取数据要比随机访问更快。而且,硬盘寻址时间的提升比起CPU速度的进步要慢得多 (参看摩尔定律),在使用硬盘作为存储媒介的系统上这种情况很可能还会持续一段时间。

下面简单罗列了一些选择行数据库还是列数据库的权衡依据。当然,如果能够把数据全放在内存中,那么使用内存数据库性能会更好。

特点:

因为硬盘寻址时间相较于计算机上其他部件的运行速度来说不是一般的慢,所以常用相同工作负载下的硬盘访问性能来比较行数据库和列数据库。

在只需要根据某几列来聚合数据的时候按列的数据组织方式更有效。因为这样只需要读取一部分数据,要比读取全部数据更快。

当只需要修改某一列值的时候按列的数据组织方式更有效。因为可以直接找到某列数据并改,而与行中的其他列无关。

⑶ 列式数据库的举例

下面以GBase 8a分析型数据库为例,描述列存储对数据存储与管理的作用。
面对海量数据分析的 I/O 瓶颈,GBase 8a 把表数据按列的方式存储,其优势体现在以下几个方面。
不读取无效数据:降低 I/O 开销,同时提高每次 I/O 的效率,从而大大提高查询性能。查询语句只从磁盘上读取所需要的列,其他列的数据是不需要读取的。例如,有两张表,每张表100GB 且有100 列,大多数查询只关注几个列,采用列存储,不需要像行存数据库一样,将整行数据取出,只取出需要的列。磁盘 I/0 是行存储的 1/10或更少,查询响应时间提高 10 倍以上。
高压缩比:压缩比可以达到 5 ~ 20 倍以上,数据占有空间降低到传统数据库的1/10 ,节省了存储设备的开销。
当数据库的大小与数据库服务器内存大小之比达到或超过 2:1 (典型的大型系统配置值)时,列存的 I/O 优势就显得更加明显;
GBase 8a 分析型数据库的独特列存储格式,对每列数据再细分为“数据包”。这样可以达到很高的可扩展性:无论一个表有多大,数据库只操作相关的数据包,性能不会随着数据量的增加而下降。通过以数据包为单位进行 I/O 操作提升数据吞吐量,从而进一步提高I/O效率。
由于采用列存储技术,还可以实现高效的透明压缩。
由于数据按列包存储,每个数据包内都是同构数据,内容相关性很高,这使得GBase 8a 更易于实现压缩,压缩比通常能够达到 1:10 甚至更优。这使得能够同时在磁盘 I/O 和 Cache I/O 上都提升数据库的性能,使 GBase 8a 在某些场景下的运算性能比传统数据库快 100 倍以上。
GBase 8a 允许用户根据需要设置配置文件,选择是否进行压缩。在启用压缩的情况下GBase 8a 根据数据的不同特性以及不同的分布状况,自动采用相应的压缩算法,如:
行程编码(适用于大量连续重复的数据,特别是排序数据);
基于数据的差值编码(适用于重复率低,但彼此差值较小的数据列);
基于位置的差值编码(适用于重复率高,但分布比较随机的数据列)。

⑷ 大数据常用哪些数据库

通常数据库分为关系型数据库和非关系型数据库,关系型数据库的优势到现在也是无可替代的,比如MySQL、SQL Server、Oracle、DB2、SyBase、Informix、PostgreSQL以及比较小型的Access等等数据库,这些数据库支持复杂的SQL操作和事务机制,适合小量数据读写场景;但是到了大数据时代,人们更多的数据和物联网加入的数据已经超出了关系数据库的承载范围。

大数据时代初期,随着数据请求并发量大不断增大,一般都是采用的集群同步数据的方式处理,就是将数据库分成了很多的小库,每个数据库的数据内容是不变的,都是保存了源数据库的数据副本,通过同步或者异步方式保证数据的一致性,每个库设定特定的读写方式,比如主数据库负责写操作,从数据库是负责读操作,等等根据业务复杂程度以此类推,将业务在物理层面上进行了分离,但是这种方式依旧存在一定的负载压力的问题,企业数据在不断的扩增中,后面就采用分库分表的方式解决,对读写负载进行分离,但是这种实现依旧存在不足,且需要不断进行数据库服务器扩容。
NoSQL数据库大致分为5种类型

1、列族数据库:BigTable、HBase、Cassandra、Amazon SimpleDB、HadoopDB等,下面简单介绍几个

(1)Cassandra:Cassandra是一个列存储数据库,支持跨数据中心的数据复制。它的数据模型提供列索引,log-structured修改,支持反规范化,实体化视图和嵌入超高速缓存

(2)HBase:Apache Hbase源于Google的Bigtable,是一个开源、分布式、面向列存储的模型。在Hadoop和HDFS之上提供了像Bigtable一样的功能。

(3)Amazon SimpleDB:Amazon SimpleDB是一个非关系型数据存储,它卸下数据库管理的工作。开发者使用Web服务请求存储和查询数据项

(4)Apache Accumulo:Apache Accumulo的有序的、分布式键值数据存储,基于Google的BigTable设计,建立在Apache Hadoop、Zookeeper和Thrift技术之上。

(5)Hypertable:Hypertable是一个开源、可扩展的数据库,模仿Bigtable,支持分片。

(6)Azure Tables:Windows Azure Table Storage Service为要求大量非结构化数据存储的应用提供NoSQL性能。表能够自动扩展到TB级别,能通过REST和Managed API访问。

2、键值数据库:Redis、SimpleDB、Scalaris、Memcached等,下面简单介绍几个

(1)Riak:Riak是一个开源,分布式键值数据库,支持数据复制和容错。(2)Redis:Redis是一个开源的键值存储。支持主从式复制、事务,Pub/Sub、Lua脚本,还支持给Key添加时限。

(3)Dynamo:Dynamo是一个键值分布式数据存储。它直接由亚马逊Dynamo数据库实现;在亚马逊S3产品中使用。

(4)Oracle NoSQL Database:来自Oracle的键值NoSQL数据库。它支持事务ACID(原子性、一致性、持久性和独立性)和JSON。

(5)Oracle NoSQL Database:具备数据备份和分布式键值存储系统。

(6)Voldemort:具备数据备份和分布式键值存储系统。

(7)Aerospike:Aerospike数据库是一个键值存储,支持混合内存架构,通过强一致性和可调一致性保证数据的完整性。

3、文档数据库:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面简单介绍几个

(1)MongoDB:开源、面向文档,也是当下最人气的NoSQL数据库。

(2)CounchDB:Apache CounchDB是一个使用JSON的文档数据库,使用Javascript做MapRece查询,以及一个使用HTTP的API。

(3)Couchbase:NoSQL文档数据库基于JSON模型。

(4)RavenDB:RavenDB是一个基于.NET语言的面向文档数据库。

(5)MarkLogic:MarkLogic NoSQL数据库用来存储基于XML和以文档为中心的信息,支持灵活的模式。

4、图数据库:Neo4J、InfoGrid、OrientDB、GraphDB,下面简单介绍几个

(1)Neo4j:Neo4j是一个图数据库;支持ACID事务(原子性、独立性、持久性和一致性)。

(2)InfiniteGraph:一个图数据库用来维持和遍历对象间的关系,支持分布式数据存储。

(3)AllegroGraph:AllegroGraph是结合使用了内存和磁盘,提供了高可扩展性,支持SPARQ、RDFS++和Prolog推理。

5、内存数据网格:Hazelcast、Oracle Coherence、Terracotta BigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面简单介绍几个

(1)Hazelcast:Hazelcast CE是一个开源数据分布平台,它允许开发者在数据库集群之上共享和分割数据。

(2)Oracle Coherence:Oracle的内存数据网格解决方案提供了常用数据的快速访问能力,一致性支持事务处理能力和数据的动态划分。

(3)Terracotta BigMemory:来自Terracotta的分布式内存管理解决方案。这项产品包括一个Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop连接器。

(4)GemFire:Vmware vFabric GemFire是一个分布式数据管理平台,也是一个分布式的数据网格平台,支持内存数据管理、复制、划分、数据识别路由和连续查询。

(5)Infinispan:Infinispan是一个基于Java的开源键值NoSQL数据存储,和分布式数据节点平台,支持事务,peer-to-peer 及client/server 架构。

(6)GridGain:分布式、面向对象、基于内存、SQL+NoSQL键值数据库。支持ACID事务。

(7)GigaSpaces:GigaSpaces内存数据网格能够充当应用的记录系统,并支持各种各样的高速缓存场景。

⑸ 列式数据库的描述

数据库以行、列的二维表的形式存储数据,但是却以一维字符串的方式存储,例如以下的一个表: EmpId Lastname Firstname Salary 1 Smith Joe 40000 2 Jones Mary 50000 3 Johnson Cathy 44000 这个简单的表包括员工代码(EmpId), 姓名字段(Lastname and Firstname)及工资(Salary).
这个表存储在电脑的内存(RAM)和存储(硬盘)中。虽然内存和硬盘在机制上不同,电脑的操作系统是以同样的方式存储的。数据库必须把这个二维表存储在一系列一维的“字节”中,由操作系统写到内存或硬盘中。
行式数据库把一行中的数据值串在一起存储起来,然后再存储下一行的数据,以此类推。
1,Smith,Joe,40000;2,Jones,Mary,50000;3,Johnson,Cathy,44000;
列式数据库把一列中的数据值串在一起存储起来,然后再存储下一列的数据,以此类推。
1,2,3;Smith,Jones,Johnson;Joe,Mary,Cathy;40000,50000,44000; 这是一个简化的说法。
列式数据库的代表包括:Sybase IQ,infobright、infiniDB、GBase 8a,ParAccel, Sand/DNA Analytics和 Vertica。
MPP的列存储数据仓库包括:Yonghong Z-DataMart

⑹ 什么是数据库列存储,原理是怎样的

数据库列存储不同于传统的关系型数据库,其数据在表中是按行存储的,列方式所带来的重要好处之一就是,由于查询中的选择规则是通过列来定义的,因 此整个数据库是自动索引化的。

按列存储每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量,一个字段的数据聚集存储,那就 更容易为这种聚集存储设计更好的压缩/解压算法。这张图讲述了传统的行存储和列存储的区别:

⑺ 常见的基于列存储的大数据数据库有哪些

目前大数据存储有两种方案可供选择:行存储和列存储。业界对两种存储方案有很多争持,集中焦点是:谁能够更有效地处理海量数据,且兼顾安全、可靠、完整性。从目前发展情况看,关系数据库已经不适应这种巨大的存储量和计算要求,基本是淘汰出局。在已知的几种大数据处理软件中,Hadoop的HBase采用列存储,MongoDB是文档型的行存储,Lexst是二进制型的行存储。在这里,我不讨论这些软件的技术和优缺点,只围绕机械磁盘的物理特质,分析行存储和列存储的存储特点,以及由此产生的一些问题和解决办法。

⑻ 列式数据库有哪些

列式数据库是以列相关存储架构进行数据存储的数据库,主要适合与批量数据处理和即席查询。相对应的是行式数据库,数据以行相关的存储体系架构进行空间分配,主要适合与小批量的数据处理,常用于联机事务型数据处理。

不读取无效数据:降低 I/O 开销,同时提高每次 I/O 的效率,从而大大提高查询性能。查询语句只从磁盘上读取所需要的列,其他列的数据是不需要读取的。例如,有两张表,每张表100GB 且有100 列,大多数查询只关注几个列,采用列存储,不需要像行存数据库一样,将整行数据取出,只取出需要的列。磁盘 I/0 是行存储的 1/10或更少,查询响应时间提高 10 倍以上。

高压缩比:压缩比可以达到 5 ~ 20 倍以上,数据占有空间降低到传统数据库的1/10 ,节省了存储设备的开销。

当数据库的大小与数据库服务器内存大小之比达到或超过 2:1 (典型的大型系统配置值)时,列存的 I/O 优势就显得更加明显;

GBase 8a 分析型数据库的独特列存储格式,对每列数据再细分为“数据包”。这样可以达到很高的可扩展性:无论一个表有多大,数据库只操作相关的数据包,性能不会随着数据量的增加而下降。通过以数据包为单位进行 I/O 操作提升数据吞吐量,从而进一步提高I/O效率。

由于采用列存储技术,还可以实现高效的透明压缩。

由于数据按列包存储,每个数据包内都是同构数据,内容相关性很高,这使得GBase 8a 更易于实现压缩,压缩比通常能够达到 1:10 甚至更优。这使得能够同时在磁盘 I/O 和 Cache I/O 上都提升数据库的性能,使 GBase 8a 在某些场景下的运算性能比传统数据库快 100 倍以上。

GBase 8a 允许用户根据需要设置配置文件,选择是否进行压缩。在启用压缩的情况下GBase 8a 根据数据的不同特性以及不同的分布状况,自动采用相应的压缩算法,如:

行程编码(适用于大量连续重复的数据,特别是排序数据);

基于数据的差值编码(适用于重复率低,但彼此差值较小的数据列);

基于位置的差值编码(适用于重复率高,但分布比较随机的数据列)。

⑼ 什么是列式存储数据库

列式数据库是以列相关存储架构进行数据存储的数据库,主要适合与批量数据处理和即席查询。
GBase 8a 分析型数据库的独特列存储格式,对每列数据再细分为“数据包”。这样可以达到很高的可扩展性:无论一个表有多大,数据库只操作相关的数据包,性能不会随着数据量的增加而下降。通过以数据包为单位进行 I/O 操作提升数据吞吐量,从而进一步提高I/O效率。

由于采用列存储技术,还可以实现高效的透明压缩。

⑽ 常用的数据库有哪几种试着阐述每种数据库的特点和使用范围

关系数据库、非关系型数据库。

1、关系数据库

特点:数据集中控制;减少数据冗余等。

适用范围:对于结构化数据的处理更合适,如学生成绩、地址等,这样的数据一般情况下需要使用结构化的查询。

2、非关系数据库

特点:易扩展;大数据量,高性能;灵活的数据模型等。

使用范围:据模型比较简单;需要灵活性更强的IT系统;对数据库性能要求较高。

(10)列存数据库扩展阅读:

非关系数据库的分类:

1、列存储数据库

这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak。

2、文档型数据库

文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。

热点内容
apkso反编译 发布:2025-01-15 23:53:20 浏览:4
买的腾讯服务器是装在电脑上吗 发布:2025-01-15 23:25:58 浏览:411
如何查看电脑的配置是不是i5 发布:2025-01-15 23:24:21 浏览:434
PI数据库 发布:2025-01-15 23:14:42 浏览:882
我的世界手机版暖心服务器 发布:2025-01-15 23:05:02 浏览:169
xts压缩比 发布:2025-01-15 23:02:41 浏览:424
怎么看联系人存储位置 发布:2025-01-15 22:47:14 浏览:794
旗舰560配置的是什么发动机 发布:2025-01-15 22:40:59 浏览:626
sql多表连接查询 发布:2025-01-15 22:33:12 浏览:221
android网络休眠 发布:2025-01-15 22:32:12 浏览:350