当前位置:首页 » 操作系统 » linux的sem

linux的sem

发布时间: 2022-05-11 01:36:19

linux 下的 struct sembuf 是什么数据结构阿

在sembuf结构中,sem_num是相对应的信号量集中的某一个资源,所以其值是一个从0到相应的信号量集的资源总数(ipc_perm.sem_nsems)之间的整数。sem_op指明所要执行的操作,sem_flg说明函数semop的行为。sem_op的值是一个整数.释放相应的资源数,将sem_op的值加到信号量的值上.

㈡ linux 信号量问题 编译错误 好像不识别sem_t定义的变量

帮你修改了一下,编译运行没问题,修改的地方都标出来了,
由于不知道你程序的功能,所以没有对你的程序逻辑进行分析

#include <stdio.h>
#include<pthread.h>
#include<semaphore.h>
#include<unistd.h>
//----------------以下是修改的部分
sem_t in;
sem_t out;
sem_t handout;
sem_t handin;
sem_t goout;
//----------------

int counter=0;

void * studentIn(void *a)
{
sem_wait(&in);//修改
counter++;
printf("%d\n",counter);
if(counter==30)
{
sem_post(&handout);//修改
return NULL;
}
sem_post(&in);//修改
return NULL;
}

void * fteacherhandout(void *b)
{
sem_wait(&handout);//修改
printf("teacher said:hand out over\n");
sem_post(&handin);//修改
return NULL;
}

void * studentout(void *c)
{
sem_wait(&handin);//修改
sem_wait(&out);//修改
counter--;
printf("%d\n",counter);
if(counter==0)
{
sem_post(&goout);//修改
return NULL;
}
sem_post(&out);//修改
}
void * fteacherout(void *d)
{
sem_wait(&goout);//修改
printf("teacher go out");
return NULL;
}

void main()
{

int i=0;
//----------------以下是修改的部分
sem_init(&in,0,1);
sem_init(&out,0,1);
sem_init(&handin,0,0);
sem_init(&handout,0,0);
sem_init(&goout,0,0);
//----------------
pthread_t thread1[30],thread2[30],teacher1,teacher2;
pthread_attr_t attr;
pthread_attr_init(&attr);
for(i=0;i<30;i++)
{
pthread_create(&thread1[i],&attr,studentIn,NULL);

}
for(i=0;i<30;i++)
{
pthread_create(&thread2[i],&attr,studentout,NULL);

}
pthread_create(&teacher1,&attr,fteacherhandout,NULL);

pthread_create(&teacher2,&attr,fteacherout,NULL);

return;
}

㈢ linux/sem.h和sys/sem.h有什么区别

你好。

不只是sem.h,很多头文件都有/usr/include/linux和/usr/include/sys两个版本。

我的印象是:linux目录里面的头文件用于内核,

sys目录里面的头文件用于应用程序或者glibc标准库

㈣ 怎么修改linux中sem的值

semget() 可以使用系统调用semget()创建一个新的信号量集,或者存取一个已经存在的信号量集:
系统调用:semget();
原型:intsemget(key_t key,int nsems,int semflg);
返回值:如果成功,则返回信号量集的IPC标识符。如果失败,则返回-1:errno=EACCESS(没有权限)
EEXIST(信号量集已经存在,无法创建)
EIDRM(信号量集已经删除)
ENOENT(信号量集不存在,同时没有使用IPC_CREAT)
ENOMEM(没有足够的内存创建新的信号量集)
ENOSPC(超出限制)
系统调用semget()的第一个参数是关键字值(一般是由系统调用ftok()返回的)。系统内核将此值和系统中存在的其他的信号量集的关键字值进行比 较。打开和存取操作与参数semflg中的内容相关。IPC_CREAT如果信号量集在系统内核中不存在,则创建信号量集。IPC_EXCL当和 IPC_CREAT一同使用时,如果信号量集已经存在,则调用失败。如果单独使用IPC_CREAT,则semget()要么返回新创建的信号量集的标识 符,要么返回系统中已经存在的同样的关键字值的信号量的标识符。如果IPC_EXCL和IPC_CREAT一同使用,则要么返回新创建的信号量集的标识 符,要么返回-1。IPC_EXCL单独使用没有意义。参数nsems指出了一个新的信号量集中应该创建的信号量的个数。信号量集中最多的信号量的个数是 在linux/sem.h中定义的:

㈤ linux下sem多大值会溢出sem

一、你是想问:sem队列的最大深度吗?

int semget(key_t key, int nsems, int semflg);

nsems must be greater than 0 and less than or equal to the maximum number of semaphores per semaphore set (SEMMSL).

#define SEMMSL 250 /* <= 8 000 max num of semaphores per id */


semget的最大队列深度为250

二、你想问的是sem id的最大值

/* Maximum value the semaphore can have. */

#define SEM_VALUE_MAX (2147483647)

㈥ Linux多进程和线程同步的几种方式

Linux 线程同步的三种方法
线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。
一、互斥锁(mutex)
通过锁机制实现线程间的同步。
初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//编译:g++ -o thread testthread.cpp -lpthread
二、条件变量(cond)
互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。
初始化条件变量。
静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
清除条件变量。无线程等待,否则返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;

static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//这个mutex主要是用来保证pthread_cond_wait的并发性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
//这个时候,应该让线程继续进入pthread_cond_wait
// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
//用这个流程是比较清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解锁
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信号量(sem)
如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。
信号量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
等待信号量。给信号量减1,然后等待直到信号量的值大于0。
int sem_wait(sem_t *sem);
释放信号量。信号量值加1。并通知其他等待线程。
int sem_post(sem_t *sem);
销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;

static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);

int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}

㈦ linux 信号量是什么怎么用

Linux信号量(semaphore)是一种互斥机制。即对某个互斥资源的访问会收到信号量的保护,在访问之前需要获得信号量。
在操作完共享资源后,需释放信号量,以便另外的进程来获得资源。获得和释放应该成对出现。
获得信号量集,需要注意的是,获得的是一个集合,而不是一个单一的信号量。
#include
#include
#include
1: int semget(key_t key,int nsems,int semflg);
key:系统根据这个值来获取信号量集。
nsems:此信号集包括几个信号量。
semflg:创建此信号量的属性。 (IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)
成功则返回该信号量集的ID。
注:
既指定IPC_CREAT又指定IPC_EXCL时,如果系统中该信号量集已经存在,则马上返回。
如果需要获得存在的信号量,则将此参数置0.
2: int semctl(int semid,int senum,int cmd....)
semid:信号量ID。
senum:对信号量集中的第几个信号量进行控制。(从0开始)
cmd:需要进行的操作。(SETVAL是其中的一个)。
根据cmd的不同可能存在第四个参数,cmd=SETVAL时,表示同时信号量可以被获得几次,如第四个参数
num=1表示只能被获得一次,既被信号量保护的资源只能同时被一个程序使用。
该系统调用,是在对信号量初始化时用的。
-3: “3”前面加了"-"表示当需要使用互斥资源时应该做这步。
int semop(int semid,struct sembuf *sem,int num_elements);
struct sembuf {
unsigned short sem_num; //该信号量集中的第几个信号量。
int sem_op;//需要获得还是释放信号量
int sem_flg;//相关动作
};
num_elements:需要对该信号量集中的多少个信号量进行处理。
获得信号量时,将sembuf结构提初始化为:
sem_num = 0; //该信号量集中的首个信号量
sem_op = -1; //获得信号量
sem_flag = IPC_NOWAIT; //如果不能获得信号量,马上返回。
semop(semid,_sem,1);
同理释放信号量时,将sem_op设为1.
以上是对信号量的简单处理

㈧ linux编程时的信号量问题。 我以前用过的信号量头文件是<semaphore.h>,而现在又发现还有个<sys/sem.h>

semaphore.h 提供的是 POSIX 标准定义的 semaphore 接口 ( sem_open, sem_wait, ...) ,这组接口使用更简单,设计的较好。

而 sys/sem.h 里 提供的是符合 System V 标准的 semaphore接口 (semget, semop, ...),这些接口都比较老了, linux提供主要是为了兼容老代码。

对于 linux 开发来说,新写的代码,都应该考虑采用 POSIX 标准的信号量。

㈨ linux 判断有明信号量是否已经创建

sem_init:初始化信号量sem_t,初始化的时候可以指定信号量的初始值,以及是否可以在多进程间共享。 sem_wait:一直阻塞等待直到信号量>0。 sem_timedwait:阻塞等待若干时间直到信号量>0。 sem_post:使信号量加1。 sem_destroy:释放信号量。...

㈩ 关于linux下的多线程使用sem信号量的运行问题

不是信号量的问题
printf函数,是先写到输出缓冲,遇到\n时,或者缓冲区满时,或者有强制输出(fflush)时,才会将缓冲区里的内容输出到屏幕上(标准输出设备:stdout)。你的代码里面并没有以上3个触发条件的任意一种,所以printf的内存没有实际输出到屏幕上。
你只要在每个printf函数后面加上fflush(stdout);就可以了。

热点内容
阿里云怎么领服务器 发布:2024-10-09 05:17:53 浏览:816
c语言可逆素数 发布:2024-10-09 05:13:44 浏览:920
班级采访问题 发布:2024-10-09 04:45:44 浏览:497
单人地图脚本 发布:2024-10-09 04:45:32 浏览:754
易语言cf自瞄源码 发布:2024-10-09 04:36:14 浏览:121
安卓和苹果哪个更难修理 发布:2024-10-09 04:36:12 浏览:26
黎明觉醒安卓什么配置 发布:2024-10-09 04:32:05 浏览:127
助手autojs脚本 发布:2024-10-09 04:31:40 浏览:186
sql判断今天 发布:2024-10-09 04:19:35 浏览:943
拆分视频需要哪些配置 发布:2024-10-09 04:06:39 浏览:912