当前位置:首页 » 操作系统 » 算法例题

算法例题

发布时间: 2022-01-10 00:51:25

❶ 这个算法与数据结构的例题是什么意思

能按步骤给我剖析一下它每一步原理吗?越详细越好,谢谢?

❷ 回溯算法的典型例题

八皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

❸ 算法时间复杂度的计算例题

第一题:
int i=1,k=100这条语句算法步数是2步,执行频率是1;
循环中, k=k+1;这条语句每次算法步数是1;执行频率是n/2-1; i+=2这条语句每次算法步数是1;执行频率是n/2-1;
所以算法复杂度为1*(n/2-1)+1*(n/2-1)+2=n=o(n);

❹ 关于计算机编程的。编写算法!题目如下图。各位大神们,帮帮忙!跪谢了!!!

拿两组三个球用天平秤,如果天平平衡,那么坏球在没秤的里,拿其中的两个再称,还平衡就是没称的,把没称的和其中一个称就知道是轻还是重了。如果第二次不平,那么再称一次也就知道了。如果第一次就不平那么记一下轻重和没称的再称。编程的话就是算重量和进行比较大小!思路一样的

❺ 贪心算法的例题分析

例题1、
[0-1背包问题]有一个背包,背包容量是M=150。有7个物品,物品不可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
价值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目标函数:∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M(M=150)
⑴根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
⑵每次挑选所占重量最小的物品装入是否能得到最优解?
⑶每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。
可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
⑴贪心策略:选取价值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
⑶贪心策略:选取单位重量价值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
对于选取单位重量价值最大的物品这个策略,可以再加一条优化的规则:对于单位重量价值一样的,则优先选择重量小的!这样,上面的反例就解决了。
但是,如果题目是如下所示,这个策略就也不行了。
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
附:本题是个DP问题,用贪心法并不一定可以求得最优解,以后了解了动态规划算法后本题就有了新的解法。
例题2、
马踏棋盘的贪心算法
123041-23 XX
【问题描述】
马的遍历问题。在8×8方格的棋盘上,从任意指定方格出发,为马寻找一条走遍棋盘每一格并且只经过一次的一条路径。
【初步设计】
首先这是一个搜索问题,运用深度优先搜索进行求解。算法如下:
⒈ 输入初始位置坐标x,y;
⒉ 步骤 c:
如果c> 64输出一个解,返回上一步骤c--
(x,y) ← c
计算(x,y)的八个方位的子结点,选出那些可行的子结点
循环遍历所有可行子结点,步骤c++重复2
显然⑵是一个递归调用的过程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//输出一个解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八个方位子结点ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//递归调用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8个方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{确定新坐标是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判断是否走过}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐标}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{递归}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{读入开始坐标}Readln(x1,y1);{读入结束坐标}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判断是否越界}ElseFind(x,y);Writeln('Total:',total){打出总数}END.这样做是完全可行的,它输入的是全部解,但是马遍历当8×8时解是非常之多的,用天文数字形容也不为过,这样一来求解的过程就非常慢,并且出一个解也非常慢。
怎么才能快速地得到部分解呢?
【贪心算法】
其实马踏棋盘的问题很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一个有名的算法。在每个结点对其子结点进行选取时,优先选择‘出口’最小的进行搜索,‘出口’的意思是在这些子结点中它们的可行子结点的个数,也就是‘孙子’结点越少的越优先跳,为什么要这样选取,这是一种局部调整最优的做法,如果优先选择出口多的子结点,那出口少的子结点就会越来越多,很可能出现‘死’结点(顾名思义就是没有出口又没有跳过的结点),这样对下面的搜索纯粹是徒劳,这样会浪费很多无用的时间,反过来如果每次都优先选择出口少的结点跳,那出口少的结点就会越来越少,这样跳成功的机会就更大一些。这种算法称为为贪心算法,也叫贪婪算法或启发式算法,它对整个求解过程的局部做最优调整,它只适用于求较优解或者部分解,而不能求最优解。这样的调整方法叫贪心策略,至于什么问题需要什么样的贪心策略是不确定的,具体问题具体分析。实验可以证明马遍历问题在运用到了上面的贪心策略之后求解速率有非常明显的提高,如果只要求出一个解甚至不用回溯就可以完成,因为在这个算法提出的时候世界上还没有计算机,这种方法完全可以用手工求出解来,其效率可想而知。

❻ 秦九韶算法例题大全

f(x)=x^6+2x^5+3x^4+5x^2+6x+7
=x(x^5+2x^4+3x^3+5x+6)+7
=x(x(x^4+2x^3+3x^2+5)+6)+7
=x(x(x*x(x^2+2x+3)+5)+6)+7
=x(x(x*x(x(x+2)+3)+5)+6)+7
加法与乘法各5次,其中乘法有连续两次相乘

❼ 如何理解分治算法及相关例题

算法步骤:
1 :从左上角起,给棋盘编号(1,1),(1,2)(8,8),计为集合qp。tracks记录走过的每个点. (可以想象为坐标(x,y))

2:设起点为(1,1),记为 当前位置 cp,

3:搜索所有可走的下一步,根据“马行日”的走步规则,可行的点的坐标是x坐标加减1,y坐标加减2,

或是x加减2,y加减1; (例如起点(1,1),可计算出(1+1,1+2),(1+1,1-2),(1-1,1+2),(1-1,1-2),(1+2,1+1),(1+2,1-1),(1-2,1+1),(1-2,1-1) 共8个点), 如果没有搜到可行点,程序结束。

4:判断计算出的点是否在棋盘内,即是否在集合qp中;判断点是否已经走过,即是否在集合tracts中,不在才是合法的点。(在上面的举例起点(1,1),则合法的下一步是(2,3)和 (3,2))

5:将前一步的位置记录到集合tracts中,即tracts.add(cp);选择一个可行点,cp=所选择点的坐标。

6:如果tracts里的点个数等于63,退出程序,否则回到步骤3继续执行。

热点内容
图的邻接表存储及遍历 发布:2024-10-18 12:02:31 浏览:495
如何查询电脑型号的配置 发布:2024-10-18 11:57:42 浏览:273
如何开张一个租赁服务器 发布:2024-10-18 11:46:13 浏览:826
python解析json文件 发布:2024-10-18 11:29:34 浏览:311
编译程序的生成程序 发布:2024-10-18 11:29:27 浏览:404
轨迹处理算法 发布:2024-10-18 11:22:25 浏览:783
支付密码怎么破解 发布:2024-10-18 11:09:19 浏览:145
线性链表c语言 发布:2024-10-18 11:09:17 浏览:785
淘宝卖的脚本可靠吗 发布:2024-10-18 10:54:04 浏览:120
数质数算法 发布:2024-10-18 10:53:26 浏览:282