当前位置:首页 » 操作系统 » k秘书算法

k秘书算法

发布时间: 2022-05-09 08:13:20

Ⅰ 留学申请过程中,GPA 到底有多重要

现在越来越多的学生都会选择出国留学,可能对于他们来说,更相信国外的教育好吧,在出国前,都要接触GPA,这可是让很多准备出国学生头疼的事情,那么GPA到底有多重要呢?


GPA含义

GPA是美国高校判断申请者是否具有扎实的专业知识以及潜在的科研学术能力的基础,它直接体现了申请者在本科阶段的学习能力和学习状态的量化指标。

总结

我相信很多学生选择出国留学,有一个原因就是觉得外国教育自由开放,不只看成绩,重视全面发展,所以在我看来,GPA对于学生来说,就是申请进好学校的一个敲门砖,是否能被录取,还要看你各方面的综合条件了

Ⅱ 有4名同学到一家公司参加三个阶段的面试:公司要求每个同学都必须首先找公司秘书初试,然后到部门主管处复

此问题可以转化为网络优化中的关键路径问题,但不同的是需要确定甲乙丙丁四人的先后顺序,顺序不同,关键路径就不同,所以需要穷搜索四个人一共24种顺序,然后用关键路径算法算出每一种顺序的关键路径,这24条关键路径中时间最短一条就是最快离开公司所用的时间,所对应的顺序就是甲乙丙丁面试的先后顺序。
代码如下:
----------------------------------------------------------------------
Title 面试问题;
!有4名同学到一家公司参加三个阶段的面试,公司要求:每个同学都必须首先找公司秘书初试,然后到部门主管处复试,中间休息20分钟,最后到经理处参加面试,
并且不允许插队(即在任何一个阶段 4 名同学的顺序是一样的,其中中间休息必须休满20分钟,可以一起休息),由于 4 名同学的专业背景不同,所以每人在三个阶段的面试时间也不同,如表所示。
这 4 名同学约定他们全部面试完以后一起离开公司,请问他们最快需多长时间能离开公司?
秘书初试 主管复试 中间休息 经理面试
同学甲 13 15 20 20
同学乙 10 20 20 18
同学丙 20 16 20 10
同学丁 8 10 20 15 ;
SETS:
s/1..4/:a,b,c;
PX(s,s):w,x,y;
ENDSETS
DATA:
w=13 15 20 20
10 20 20 18
20 16 20 10
8 10 20 15;
ENDDATA
min=b(4)+y(4,4);

@for(s(i):@sum(s(j):x(i,j))=1);
@for(s(j):@sum(S(i):x(i,j))=1);
@for(PX:@bin(x));!矩阵x是矩阵w的行交换矩阵,用来调整甲乙丙丁的先后顺序,比如:要让丙第一个面试,甲最后一个面试,则需交换矩阵w第1和4行,
此时只需让x=0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0,然后用x乘以w就可以达到交换w的行向量的目的了;
@for(PX(i,j):y(i,j)=@sum(s(k):x(i,k)*w(k,j)));!矩阵y就是矩阵w进行了行交换后的矩阵,y=x*w;

c(1)=y(1,1);
@for(s(i)|i#GT#1 #and# i#LE#3:c(i)=c(i-1)+y(i,1));!记录第i人秘书初试的结束时间;

a(1)=y(1,1);
a(4)=a(3)+y(4,2);
@for(s(i)|i#GT#1 #and# i#LE#3:a(i)=c(i-1)+@smax(y(i+1,1),y(i,2)));!记录第i个人主管面试的开始时间;

b(1)=a(1)+y(1,3)+y(1,2);
@for(s(i)|i#GT#1:b(i)=@smax(a(i)+y(i,3)+y(i,2),b(i-1)+y(i-1,4)));!记录第i个人经理面试的开始时间;
end

Ⅲ 假设有5个条件很类似的女孩,把她们分别记为A,C,J,K,S.她们应聘秘书工作,但只有3个秘书职位,因此5

(1)从5个女生中任选3个人,所有的方法有C 5 3
而3人中有女生K即再从其他4人中选取2人的方法有C 4 2
由古典概型的概率公式得女生K得到一个职位的概率为
C 24
C 35
=
3
5

(2)从5个女生中任选3个人,所有的方法有C 5 3
女孩K和S各得到一个职位,即再从其他3人中选取1人,有3种方法,
由古典概型的概率公式得女生S没有得到职位而A和K各得到一个职位概率为
3
C 35
=
3
10

(3)女生K,S都没得到一个职位的方法有1中,
所以女生K,S都没得到一个职位的概率为
1
C 53
=
1
10

所以女生K或S得到一个职位概率为 1-
1
C 35
=
9
10

Ⅳ k means算法如何具体实现呢

1.基本Kmeans算法[1]

[cpp] view plain
选择K个点作为初始质心
repeat
将每个点指派到最近的质心,形成K个簇
重新计算每个簇的质心
until 簇不发生变化或达到最大迭代次数

时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数,n为维数

空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数,n为维数

Ⅳ 金融数学会涉及到哪些方面

金融数学是一门新兴学科,是“金融高技术 ”的重要组成部分。研究目标是利用我国数学界某些方面的优势,围绕金融市场的均衡与有价证券定价的数学理论进行深入剖析,建立适合国情的数学模型,编写一定的计算机软件,对理论研究结果进行仿真计算,对实际数据进行计量经济分析研究,为实际金融部门提供较深入的技术分析咨询。核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。套利、最优与均衡是金融数学的基本经济思想和三大基本概念。
金融数学主要的研究内容和拟重点解决的问题包括:
(1)有价证券和证券组合的定价理论
发展有价证券(尤其是期货、期权等衍生工具)的定价理论。所用的数学方法主要是提出合适的随机微分方程或随机差分方程模型,形成相应的倒向方程。建立相应的非线性Feynman一Kac公式,由此导出非常一般的推广的Black一Scholes定价公式。所得到的倒向方程将是高维非线性带约束的奇异方程。
研究具有不同期限和收益率的证券组合的定价问题。需要建立定价与优化相结合的数学模型,在数学工具的研究方面,可能需要随机规划、模糊规划和优化算法研究。
在市场是不完全的条件下,引进与偏好有关的定价理论。
(2)不完全市场经济均衡理论(GEI)
拟在以下几个方面进行研究:
1.无穷维空间、无穷水平空间、及无限状态
2.随机经济、无套利均衡、经济结构参数变异、非线资产结构
3.资产证券的创新(Innovation)与设计(Design)
4.具有摩擦(Friction)的经济
5.企业行为与生产、破产与坏债
6.证券市场博弈。
(3)GEI 平板衡算法、蒙特卡罗法在经济平衡点计算中的应用, GEI的理论在金融财政经济宏观经济调控中的应用,不完全市场条件下,持续发展理论框架下研究自然资源资产定价与自然资源的持续利用。
1.什么是关联规则
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事:"尿布与啤酒"的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
2.关联规则挖掘过程、分类及其相关算法
2.1关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(MinimumSupport)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequentk-itemset),一般表示为Largek或Frequentk。算法并从Largek的项目组中再产生Largek+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5%且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则“尿布,啤酒”,满足下列条件,将可接受“尿布,啤酒”的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据“尿布,啤酒”关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
2.2关联规则的分类
按照不同情况,关联规则可以进行分类如下:
1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书”,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。
2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。
在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。
3.基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。
在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。 Apriori算法
2.3关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。
2.基于划分的算法:Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。
3.FP-树频集算法:针对Apriori算法的固有缺陷,J.Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。
3.该领域在国内外的应用
3.1关联规则发掘技术在国内外的应用
就目前而言,关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。一旦获得了这些信息,银行就可以改善自身营销。现在银行天天都在开发新的沟通客户的方法。各银行在自己的ATM机上就捆绑了顾客可能感兴趣的本行产品信息,供使用本行ATM机的用户了解。如果数据库中显示,某个高信用限额的客户更换了地址,这个客户很有可能新近购买了一栋更大的住宅,因此会有可能需要更高信用限额,更高端的新信用卡,或者需要一个住房改善贷款,这些产品都可以通过信用卡账单邮寄给客户。当客户打电话咨询的时候,数据库可以有力地帮助电话销售代表。销售代表的电脑屏幕上可以显示出客户的特点,同时也可以显示出顾客会对什么产品感兴趣。
同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。这些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。
但是目前在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。目前金融业实施的大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,却无法发现数据中存在的各种有用的信息,譬如对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。可以说,关联规则挖掘的技术在我国的研究与应用并不是很广泛深入。
3.2近年来关联规则发掘技术的一些研究
由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。如考虑属性之间的类别层次关系,时态关系,多表挖掘等。近年来围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。

Ⅵ 金融数学的研究内容

金融数学主要的研究内容和拟重点解决的问题包括:
(1)有价证券和证券组合的定价理论
发展有价证券(尤其是期货、期权等衍生工具)的定价理论。所用的数学方法主要是提出合适的随机微分方程或随机差分方程模型,形成相应的倒向方程。建立相应的非线性Feynman一Kac公式,由此导出非常一般的推广的Black一Scholes定价公式。所得到的倒向方程将是高维非线性带约束的奇异方程。
研究具有不同期限和收益率的证券组合的定价问题。需要建立定价与优化相结合的数学模型,在数学工具的研究方面,可能需要随机规划、模糊规划和优化算法研究。
在市场是不完全的条件下,引进与偏好有关的定价理论。
(2)不完全市场经济均衡理论(GEI)
拟在以下几个方面进行研究:
1.无穷维空间、无穷水平空间、及无限状态
2.随机经济、无套利均衡、经济结构参数变异、非线资产结构
3.资产证券的创新(Innovation)与设计(Design)
4.具有摩擦(Friction)的经济
5.企业行为与生产、破产与坏债
6.证券市场博弈。
(3)GEI 平板衡算法、蒙特卡罗法在经济平衡点计算中的应用, GEI的理论在金融财政经济宏观经济调控中的应用,不完全市场条件下,持续发展理论框架下研究自然资源资产定价与自然资源的持续利用。
1.什么是关联规则
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事:"尿布与啤酒"的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
2.关联规则挖掘过程、分类及其相关算法
2.1关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(MinimumSupport)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequentk-itemset),一般表示为Largek或Frequentk。算法并从Largek的项目组中再产生Largek+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5%且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则“尿布,啤酒”,满足下列条件,将可接受“尿布,啤酒”的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据“尿布,啤酒”关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
2.2关联规则的分类
按照不同情况,关联规则可以进行分类如下:
1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书”,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。
2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。
在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。
3.基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。
在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。 Apriori算法
2.3关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。
2.基于划分的算法:Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。
3.FP-树频集算法:针对Apriori算法的固有缺陷,J.Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。
3.该领域在国内外的应用
3.1关联规则发掘技术在国内外的应用
就目前而言,关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。一旦获得了这些信息,银行就可以改善自身营销。现在银行天天都在开发新的沟通客户的方法。各银行在自己的ATM机上就捆绑了顾客可能感兴趣的本行产品信息,供使用本行ATM机的用户了解。如果数据库中显示,某个高信用限额的客户更换了地址,这个客户很有可能新近购买了一栋更大的住宅,因此会有可能需要更高信用限额,更高端的新信用卡,或者需要一个住房改善贷款,这些产品都可以通过信用卡账单邮寄给客户。当客户打电话咨询的时候,数据库可以有力地帮助电话销售代表。销售代表的电脑屏幕上可以显示出客户的特点,同时也可以显示出顾客会对什么产品感兴趣。
同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。这些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。
但是目前在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。目前金融业实施的大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,却无法发现数据中存在的各种有用的信息,譬如对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。可以说,关联规则挖掘的技术在我国的研究与应用并不是很广泛深入。
3.2近年来关联规则发掘技术的一些研究
由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。如考虑属性之间的类别层次关系,时态关系,多表挖掘等。近年来围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。

Ⅶ iso是什么

1、ISO文件其实就是光盘的镜像文件,ISO文件一般以iso为扩展名,其文件格式为iso9660。

2、ISO是国际标准化组织简称,成立于1947年2月23日,是一个全球性的非政府组织,是国际标准化领域中一个十分重要的组织。ISO一来源于希腊语“ISOS”,即“EQUAL”——平等之意。

3、ISO标准是指由国际标准化组织 ISO制订的标准,根据该组织章程,每一个国家只能有一个最有代表性的标准化团体作为其成员,原国家质量技术监督局以CSBTS名义国参加ISO活动。

4、IS09000品质体系认证机构是经过国家认可的权威机构,对企业的品质体系的审核要求非常严格。食品企业可按照经过严格审核的国际标准化的品质体系进行品质管理,确保了食品质量的合格率。

5、ISO文件其实就是光盘的镜像文件,ISO文件一般以iso为扩展名,其文件格式为iso9660。

(7)k秘书算法扩展阅读

ISO的主要功能是为人们制订国际标准达成一致意见提供一种机制。其主要机构及运作规则都在一本名为ISO/IEC技术工作导则的文件中予以规定,其技术结构在ISO是有800个技术委员会和分委员会。

它们各有一个主席和一个秘书处,秘书处是由各成员国分别担任,承担秘书国工作的成员团体有30个,各秘书处与位于日内瓦的ISO中央秘书处保持直接联系。

通过这些工作机构,ISO已经发布了17000多个国际标准,如ISO公制螺纹、ISO的A4纸张尺寸、ISO的集装箱系列(世界上95%的海运集装箱都符合ISO标准)、ISO的胶片速度代码、ISO的开放系统互联(OS2)系列(广泛用于信息技术领域)和有名的ISO9000质量管理系列标准。

Ⅷ 什么是H-K算法

其实HK算法思想很朴实,就是在最小均方误差准则下求得权矢量.
他相对于感知器算法的优点在于,他适用于线性可分和非线性可分得情况,对于线性可分的情况,给出最优权矢量,对于非线性可分得情况,能够判别出来,以退出迭代过程.
2.在程序编制过程中,我所受的最大困扰是:关于收敛条件的判决.
对于误差矢量:e=x*w-b
若e>0 则继续迭代
若e=0 则停止迭代,得到权矢量
若e〈0 则停止迭代,样本是非线性可分得,
若e有的分量大于0,有的分量小于0 ,则在各分量都变成零,或者停止由负值转变成正值时,停机.
3.在程序编制中的注意点:
1)关于0的判断,由于计算机的精度原因,严格等于零是很不容易的,而且在很多情况下也没有必要,则只要在0的一个可以接受的delta域内就可接受为零
2)关于判断,迭代前后,变量是否发生变化
在判断时,显然也不能直接判断a(i)==a(i+1)
而应该|a(i)-a(i+1)|〈err
4.HK详细代码如下:
unction [w,flag]=HK(data)
Iteration=20;
flag=0;
% [n,p]=size(data);
n=size(data,1);
b=ones(n,1)./10;
c=0.6;
xx=inv(data'*data)*data';
w=xx*b;
e=data*w-b;
t=0;
while (1)
temp=min(e);
temp1=max(e);
if temp>-1e-4 && temp1e-3
deltab=e+abs(e);
b=b+c.*deltab;
w=w+c.*xx*deltab;
e=data*w-b;
else
if temp>=0 && temp1

H-K算法是求解Xw=b,式中b=( b1, b2, …, bn)T,b的所有分量都是正值。这里要同时计算w和b,我们已知X不是N*N的方阵,通常是行多于列的N*(n+1)阶的长方阵,属于超定方程,因此一般情况下,Xw=b没有唯一确定解,但可求其线性最小二乘解。
设Xw=b的线性最小二乘解为w*,即使||Xw*-b||=极小 采用梯度法,定义准则函数:
)bXw()bXw(2
1bXw21)bxw(21)b,x,w(JT2
n1i2iiT
当Xw=b的条件满足时,J达到最小值。由于上式中包括的
n
1
i2iiT
)bxw
(项为两个数量方差的和,且我们将使其最小化,因此也
称之为最小均方误差算法。
使函数J同时对变量w和b求最小。对于w的梯度为:
)bXw(Xw
J
T 使0w
J
,得XT(Xw-b)=0,从而XTXw=XTb。因为XTX为(n+1)*(n+1)阶方阵,因此可求得解:
w = (XTX)-1XTb = X#b
这里X#= (XTX)-1XT称为X的伪逆,X是N*(n+1)阶的长方阵。
由上式可知,只要求出b即可求得w。利用梯度法可求得b的迭代公式为:
)
k(bbbJC)k(b)1k(b

根据上述约束条件,在每次迭代中,b(k)的全部分量只能是正值。由J的准则函数式,J也是正值,因此,当取校正增量C为正值时,为保证每次迭代中的b(k)都是正值,应使)
k(bbbJ

为非正值。在此条件下,准则函数J的微分为:
|bXw|)bXw(bJ2)
k(bb

该式满足以下条件:
若[Xw(k) – b(k)] > 0,则)k(b)k(XwbJ)
k(bb

 若[Xw(k) – b(k)] < 0,则0bJ)
k(bb 由b的迭代式和微分,有:
b(k+1) = b(k) +δb(k)
δb(k) = C[Xw(k) – b(k) + | Xw(k) – b(k)|]
将此式代入w=X#b,有:
w(k+1) = X#b(k+1) = X#[b(k) +δb(k)] = w(k) + X#δb(k)
为简化起见,令e(k) = Xw(k) – b(k),可得H-K算法的迭代式。
设初值为b(1),其每一分量均为正值,则:
w(1) = X#b(1) e(k) = Xw(k) – b(k)
w(k+1) = w(k) + X#{C[Xw(k) – b(k) + |Xw(k) – b(k)|]}
= w(k) + CX#[e(k) + |e(k)|]
由于
X#e(k) = X#[Xw(k) – b(k)] = (XTX)-1XT[Xw(k) – b(k)]

= w(k) –X#b(k) = 0
因此
w(k+1) = w(k) + CX#|e(k)|
b(k+1) = b(k) + C[Xw(k) – b(k) + |Xw(k) – b(k)|]
= b(k) + C[e(k) + |e(k)|]

Ⅸ k近邻算法如何做回归分析

有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:
如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。 于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素: K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。 该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别 距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
实现 K 近邻算法时,主要考虑的问题是如何对训练数据进行快速 K 近邻搜索,这在特征空间维数大及训练数据容量大时非常必要。

热点内容
jap服务器环境搭建 发布:2025-01-17 01:22:37 浏览:996
铜镜数据库 发布:2025-01-17 01:08:57 浏览:673
上传图片链接 发布:2025-01-17 01:08:11 浏览:891
智跑买车可以提哪些配置 发布:2025-01-17 01:06:46 浏览:463
qq2013源码 发布:2025-01-17 01:06:35 浏览:94
sql的decode 发布:2025-01-17 01:01:01 浏览:4
系数参数配置什么意思 发布:2025-01-17 00:34:03 浏览:755
台湾免费服务器云主机 发布:2025-01-17 00:29:07 浏览:870
c语言sizeofchar 发布:2025-01-17 00:29:01 浏览:469
安卓手机的云备份在哪里能找到 发布:2025-01-17 00:14:12 浏览:472