数据库部署方案
A. 如何生成和部署到本地数据库
此本地服务器实例可以用作生成、测试和调试您的项目的沙盒。它独立于您已安装的任何 sql Server 实例,并且不可从 SQL Server Data Tools (SSDT) 之外访问。如果开发人员对生产数据库只有有限访问权限或没有访问权限,但想要在授权人士将其项目部署到生产前在本地测试其项目,则上述安排适合于此类开发人员。此外,在您为 SQL Azure 开发数据库解决方案时,可以利用此本地服务器所提供的便利,在将数据库项目部署到云中之前在本地开发和测试您的数据库项目。 警告: 在SQL Server 对象资源管理器中的本地数据库节点下的数据库表示其相应的数据库项目,与连接的服务器实例中的同名数据库无关。 警告: 以下过程将使用在连接的数据库开发和面向项目的脱机数据库开发这两节中的之前的过程中创建的实体。 使用本地数据库请注意,在SQL Server 对象资源管理器中的SQL Server 节点下,将出现一个名为“本地”的新节点。这是本地数据库实例。展开“本地”和“数据库”节点。请注意具有与 TradeDev 项目同名的数据库的外观。展开此数据库下的节点。“数据工具操作”窗口可在“本地”节点数据库上显示正在进行的扩展/导入操作的状态。请注意,这些节点不包含我们在以前的过程中创建的任何表和实体。按F5 调试 TradeDev 数据库项目。默认情况下,SSDT 将使用本地数据库服务器实例来调试数据库项目。在这种情况下,SSDT 将首先尝试生成该项目,如果没有错误,该项目(及其实体)将部署到本地数据库中。如果您在以后调试相同的项目,SSDT 将检测到您在上次调试会话后进行的任何更改,并且仅将这些更改部署到本地数据库。再次展开“本地”数据库服务器中 TradeDev 下的节点。这一次,注意到表、视图和函数已部署到该本地数据库服务器。右键单击 TradeDev 节点并选择“新建查询”。在脚本窗格中,粘贴以下代码并单击“执行查询”按钮以便运行该查询。 select * from dbo.GetProctsBySupplier(1) “消息”窗格将显示“(0 行受影响)”并且“结果”窗格将不返回任何行。这是因为我们对本地数据库进行查询,而非对包含实际数据的连接的数据库进行查询。您可以通过右键单击这个本地 TradeDev 数据库下方的 Procts 表,然后选择“查看数据”,对此进行确认。请注意,该表是空的。将实际数据复制到本地数据库在SQL Server 对象资源管理器中,展开您的连接的 SQL Server 实例并找到 TradeDev 数据库。右键单击 Suppliers 表并选择“查看数据”。单击数据编辑器顶部的“脚本”按钮(从右边数第二个按钮)。从该脚本中复制 INSERT 语句。展开“本地”服务器实例并右键单击 TradeDev 节点,然后选择“新建查询”。将INSERT 语句粘贴到此查询窗口中并执行查询。重复上述步骤,将数据从连接的 TradeDev 数据库的 Procts 和Fruits 表复制到本地 TradeDev 数据库。右键单击该“本地”服务器实例,然后选择“刷新”。使用“查看数据”对这些表进行检查,以便确认已填充该本地数据库。右键单击本地服务器实例的 TradeDev 节点,然后选择“新建查询”。在脚本窗格中,粘贴以下代码并单击“执行查询”按钮以便运行该查询。
B. 虚拟机上greenplum数据库怎么部署
目前合作方跟我说他们greenplum数据库没有工具,只能是命令 然后在下载 我去 这不是增加我的工作量,工作难度么???我这目前有两种方案 一:就是多线程取的数据集,然后将数据集信息写入至文本 二:就是使用greenplum命令先到处至服务端,然后再下载下来 可这两种都有优缺点啊?? 或者有没有其他方案 在这两者之中效率最大化
C. 数据库规划一般要包含那些内容
总体数据规划主要从三个方面去规划:1、管理方面、2、技术方面 3、用户方面。
总体规划的内容包括:战略的业务规划、战略的信息技术规划、战略的数据规划。
D. 固态硬盘适合部署数据库吗有没有兼顾性能和寿命的方案
购买intel(英特尔)傲腾 900P 固态硬盘
寿命是传统MLC颗粒固态硬盘的7倍-22倍寿命,拥有超高4K随机读写。
如果买得起傲腾P4800X更长,比传统MLC高35倍-105倍寿命。
或三星SZ985 SLI颗粒固态硬盘,擦写寿命42.7PBW
并不是无法解决,而是贫穷限制想象。
E. 怎样部署ORACLE数据库
1.启动Websphere6.0服务
2.打开IE浏览器,在地址栏中输入:http://localhost:9060/ibm/console/,登陆Websphere6.0管理控制台
3.在导航栏左侧选择:环境-〉Websphere变量
找到ORACLE_JDBC_DRIVER_PATH ,输入ORACLE_JDBC_DRIVER_PATH 的值,指定ORACLE数据库驱动jar包的位置,确定,保存。
4.在导航栏左侧选择:资源-〉JDBC提供者
5.在右侧JDBC提供者新建页面点击“新建”按钮
6.按照下图选择ORACLE数据库相关类型设置,点击下一步,完成第一步设置:
7.配置页面的设置全部默认,不用修改,点击确定,保存。
8.点击刚才新建的ORACLE JDBC DRIVER,进入配置页面,点击右侧的“数据源”
9.点击“新建”,新建数据源:
10.输入名称:inforflowDS;JNDI名称:jdbc/inforflowDS;数据存储 helper 类名Oracle 数据源属性中输URL jdbc:oracle:thin:@数据库服务器IP:1521:oracle点击“确定”保存。
11.点击“inforflowDS”数据源,点击右侧的相关项:J2EE 连接器体系结构(J2C)认证数据条目
12.点击“新建”,输入用户别名flow_oracle,用户标识:system 密码:admin,点击确定,保存
13. 打开inforflowDS数据源配置页面,在组件管理的认证别名下拉框中选择上面刚刚新建好的J2EE 连接器体系结构(J2C)认证数据条目—flow_oracle点击确定,保存设置
14.在数据源页面点击“测试连接”
15.测试连接成功
F. 在数据库设计过程中要注意哪些问题
DB2数据库的性能与稳定性直接跟数据库对象的多少、大小有关。如果对象很少,不复杂,那么就算不怎么规划,也能够达到比较高的性能。如果对象数据比较多、比较大的话,那么就需要在数据库设计之前好好的规划,否则会在很大程度上影响数据库的性能与稳定性。
一、选择合适的语言与数据库字符集。
在企业中部署数据库的时候,首先需要在操作系统上安装数据库。而在安装数据库的时候,需要选择安装的语言环境。即是以中文状态下安装数据库还是以英文状态安装数据库。如在启动安装程序的时,可以利用/i language选项来指定安装过程中所采用的语言。到目前为止,DB2数据库已经支持很多种语言。那么数据库在安装过程中,该采用什么语言呢?笔者建议,只要数据库管理员有一点英语基础,最好能够采用英文语言环境来进行安装。虽然说现在DB2数据库的中文语言环境已经设计的比较完善,但是笔者仍然担心其有一些不知名的漏洞。为此笔者在安装DB2数据库的时候,基本上都采用的是英文语言环境来进行安装。即将语言设置为“EN”,表示英文。提高DB2数据备份与恢复的效率。
另外如果DB2 数据库中要保存英文以外的数据,或者说用户会使用不同的字符集访问数据库时,还需要在数据库安装过程中选择特定的数据库字符集。DB2数据库中的所有字符数据,包括数据字典中的数据,都是存储在数据库字符集中的。如果用户使用不同的字符集访问数据库时,数据库管理员就需要选择包含所有这些用户的字符集的超集。只有如此,才能够确保系统能够很方便的使用替代字符完成字符的转换,从而提高数据库的性能。如果用户选择的字符集不对,有可能会出现一些莫名其妙的问题。如一次用户在安装数据库过程中,没有选择合适的字符集。虽然在使用的过程中,其存储中文字符没有问题。但是当对数据库采取还原操作时,却发现还原后的数据库中有些原来是中文字符的地方,尽然出现了乱码。这主要就是没有选择合适的字符集惹的祸。有时候如果字符集选择不当的话,从外部数据源(如Excel表格)导入数据的时候,中文数据也会无法顺利导入。所以,数据库管理员在安装数据库的时候,需要根据实际企业,来选择合适的字符集。
二、评估数据库对象的大小、数量。
DB2数据库的性能与稳定性直接跟数据库对象的多少、大小有关。如果对象很少,不复杂,那么就算不怎么规划,也能够达到比较高的性能。如果对象数据比较多、比较大的话,那么就需要在数据库设计之前好好的规划,否则会在很大程度上影响数据库的性能与稳定性。其实DB2 数据库就好像一个仓库,数据库中的对象(如索引、数据表、表空间)等等就好像仓库中的货物。如果货物比较少,那么随便放放,仓库都显得很空旷。货物寻找起来也会很方便。但是如果货物数量比较多、比较大,就必须要对其存储空间进行合理规划。只有如此才能够让仓库的空间利用率达到最佳状态。并且货物的存放有序,在查找起来也特别的方便。笔者这里就以仓库管理为例,说话该如何做好数据库对象大小、数量等方便的评估,以及他们对于数据库性能与稳定性的影响。
1、根据对象大小来规划存储空间。在仓库货物的摆放上,要根据货物的大小来规划存储空间。或者说要首先防止大的货物。只有如此空间的利用率才会最高。其实在规划DB2对象的时候,也是如此。如某些表可能会包含的记录比较多,属于大表。此时数据库管理员就需要考虑,是否将其放置在一个独立的表空间或者硬盘空间上,以提高数据操作的性能。大表所对应的索引往往也是比较大的。为此在硬件条件允许的情况下,将索引表与数据表分别存放在不同的硬盘上,可以提高数据库的性能。而对于一些比较小的对象(如数据表),可以将它们存放在一个表空间中。其实这个表空间就好像仓库中的一个个纸盒子。将小的对象放入到这个“纸盒子”中,不但不占空间,而且也容易管理。
2、根据对象的使用频率来规划存放空间。在仓库中摆放物品的时候,往往会把近期就要用到的货物或者频繁需要用到的东西放在仓库门口或者容易拿到的地方。如此在拿这些货物时就会比较便捷,也不会对其他货物产生影响。对于DB2数据库中的对象来说,也是这么一回事。可以将那些访问量比较大的对象,如索引、数据表,存放在性能比较好的硬盘上或者单独的硬盘中。此时访问这些数据,就不会与其它对象产生I/O冲突,操作起来速度就会比较快。而将不怎么用到的对象,存放在一起。由于他们不怎么被用到,所以即使存放在性能比较低的硬盘上,其对数据库性能产生的负面影响也是非常有限的。 在DB2数据库里面如何更新执行计划
3、根据类别来存放数据库对象。在仓库中存放货物的时候,还会对其进行分类。然后根据类别来进行存放。这有利于货物的管理与检索。其实在数据库对象存储空间设计时,也需要考虑这个因素。如现在应用软件在设计的时候,很多都是根据模块来设计。那么在数据库对象设计时,也需要根据这个模块来设计存储的空间。如将同一个模块的数据库对象存放在同一个表空间内。不过这可能会跟上面的两个建立相违背。此时最好是在对象的命名上做文章。如可以根据模块的不同,分别给数据库对象取一个相同的前缀或者后缀。如即使同一块模块要用到多个表空间,此时就可以给表空间一个相同的前缀。如此在管理数据库对象的时候,根据表空间的前缀就可以判断其所属的模块了。如果再加上一个后缀来表示其数据库对象的分类,那么就更合理了。为此在管理数据库对象的时候,要执行分类管理。不仅要从技术上对其进行分类,如分为索引、数据表、关键字等等。还需要从功能上进行分类,如按应用程序的模块来进行分类等等。
三、设计好数据库备份与还原的方案。
在数据库交付生产使用之后,往往需要进行大量的测试。但是在测试过程中往往又会产生很多的垃圾数据。可是交给企业应用的,肯定是一个干净的数据库系统。为此在数据库设计的时候,就需要想好如果减少测试过程中的垃圾数据。或者采取什么样的方式来实现在交互时自动清除垃圾数据的机制。
一般来说,想要一个数据库备份与还原的方案,减少数据库测试所产生的垃圾数据。如现在在给企业部署数据库的时候,往往是先安装一个干净的数据库系统。当然字符集这些需要预先设置好。然后再利用数据库还原功能将预先定义好的数据库模型还原出来。
另外有些时候需要两个方案互为补充。如在数据库初始化的过程中,采用数据库还原的方式来创建数据库对象。但是在应用软件升级的时候,由于此时已经有了用户的数据,为此不能够在使用数据库还原的方法。而是通过应用程序来执行某些SQL代码,来调整或者增加部分数据库对象。无论采用哪一种方式,需要遵循的一个原则就是在给企业创建数据库对象时要最大限度的减少测试。而要做到这一点,就是需要先在测试服务器上创建对象并测试对象可用。然后直接将相关的SQL代码在投入使用的数据库服务器上执行。
G. 如何部署sql2008智能停车场数据库
sql2008智能停车场数据库的部署一般是通过镜像数据库实现的。
数据库镜像是一种针对数据库高可用性的基于软件的解决方案。其维护着一个数据库的两个相同的副本,这两个副本分别放置在不同的SQL Server数据库实例中。建议使用不同位置的两台服务器来承载。在同一时刻,其中一台上的数据库用于客户端访问,充当“主体服务器”角色;而另一台则根据镜像会话的配置和状态,充当热备份服务器,即“镜像服务器角色”,这两种角色不是绝对的。
部署实现:
1、条件
SQL08R2的“数据库镜像”必须基于每个使用完整恢复模式的数据库来实现。对于SQL08R2不支持简单恢复模式和大容量日志恢复模式的数据库镜像。另外,不能镜像“master”、“msdb”、“model”和“tempdb”等系统数据库。
2、环境
测试环境为一个LAN内,IP地址是192.168.0.0/24段
DC:192.168.0.110/24——域控制器和DNS服务器;
SQL-1:192.168.0.111/24——SQL08R2主体服务器;
SQL-1:192.168.0.112/24——SQL08R2镜像服务器;
SQL-1:192.168.0.113/24——SQL08R2见证服务器。
拓扑结构图:
5、部署完成
H. Sql server 安全,性能优化的15条方案
1.1 基本概念 与数据库技术密切相关的基本概念包括:数据、数据库、数据库管理系统和数据库系统四大概念。1. 数据(Data) 数据是对客观事物的一种描述,是由能被计算机识别与处理的数值、字符等符号构成的集合,即数据是指描述事物的符号记录。 广义地说,数据是一种物理符号的序列,用于记录事物的情况,是对客观事物及其属性进行的一种抽象化及符号化的描述。数据的概念应包括数据的内容和形式两个方面。数据的内容是指所描述的客观事物的具体特性,也就是通常所说的数据的“值”;数据的形式则是指数据内容所存储的具体形式,即数据的“类型”。故此,数据可以用数据类型和值来表示。2. 数据库(Data Base,DB) 数据库是指长期存储在计算机内部、有组织的、可共享的数据集合,即在计算机系统中按一定的数据模型组织、存储和使用的相关联的数据集合成为数据库。 数据库中的数据按照一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性、易扩展性、集中性和共享性,以文件的形式存储在存储介质上的。数据库中的数据由数据库管理系统进行统一管理和控制,用户对数据库进行的各种数据操作都是通过数据库管理系统实现。3. 数据库管理系统(Data Base Management System,DBMS) 数据库管理系统是数据库系统的核心,是为数据库的建立、使用和维护而配置的软件,是位于操作系统与用户之间的一层数据管理软件。主要功能是对数据库进行定义、操作、控制和管理。1) 数据定义 数据的定义包括:定义构成数据库结构的外模式、模式和内模式,定义各个外模式和模式之间的映射,定义模式与内模式之间的映射,定义有关的约束条件。2) 数据处理对数据的处理操作主要包括对数据库数据的检索、插入、修改和删除等基本操作。3) 安全管理 对数据库的安全管理主要体现在:对数据库进行并发控制、安全性检查、完整性约束条件的检查和执行、数据库的内部维护(如索引、数据字典的自动维护)等。并且能够管理和监督用户的权限,防止拥护有任何破坏或者恶意的企图。4) 数据的组织、存储和管理 负责分类地组织、存储和管理数据库数据,确定以何种文件结构和存取方式物理地组织数据,如何实现数据之间的联系,以便提高存储空间利用以及提高随机查找、顺序查找、增加、删除和查改等操作的时间效率。5) 建立和维护数据库 建立数据库包括数据库数据的初始化与数据转换等。维护数据库包括数据库的转储与恢复、数据库的重组织与重构造、性能的监视与分析等。6) 数据通信接口提供与其他软件系统进行通信的功能。4. 数据库系统(Data Base System,DBS) 数据库系统指在计算机系统中引入数据库后的系统构成,一般有数据库、数据库管理系统、应用系统、数据库管理员和用户构成。1.2 数据库系统的特点 数据库系统的点主要有:数据的结构化、高共享性、低冗余度、易扩充、较高的独立性(物理数据独立、逻辑数据独立)以及数据由DBMS统一管理和控制(数据的安全性Security保护、数据的完整性Integrity保护、并发Concurrency控制、数据库恢复Recovery)等。第二章 数据库性能优化 数据库作为一种独立的、有组织、的可共享的数据集合,数据的查询访问是数据操作中频度最高的操作。当数据量和访问频率达到一定程度的时候,系统的响应速度就至关重要了,这时候就需要对数据库数据存储的结构和方式进行优化,使其满足系统需要的访问响应速度。2.1 性能影响因素 常见的影响数据访问速度的因素,有以下几种:1. 没有索引或者没有用到索引 数据库索引就像书籍中目录一样,使用户在访问数据库数据时,不必遍历所有数据就可以找到需要的数据。创建索引后,可以保证每行数据的唯一性,极大地提高数据检索效率,这是一中牺牲空间换取性能的方法。没有索引或者没有用到索引是数据访问速度慢最常见的因素,也是程序设计的一个缺陷所在。2. I/O吞吐量小,形成了瓶颈效应 I/O吞吐量是影响数据访问速度的客观因素(硬件因素)。在一定的硬件环境下,利用优化的部署方案可适当提高I/O吞吐量。3. 没有创建计算列导致查询不优化 计算列是一个比较特殊的列,不填写任何设计类型,用户不可以改变该列的值。计算列的值是通过一定的函数公式等以另一个或多个列的值为输入值计算出的结果。如果没相应的计算列,在一些数据查询的时候需要对已有数据进行计算,从而浪费一部分性能。4. 内存不足 对数据库数据的查询访问毫无疑问会占用大量的内存空间,当内存不足的情况下,数据的访问速度会受到明显的影响甚至访问出现超时情况,是影响数据访问速度的客观因素。5. 网络速度慢 网络速度慢是影响数据访问速度的客观因素。可通过提高网络访问的位宽来解决。6. 查询出的数据量过大 当查询出的数据量过大时,内存的占用、系统时间的占用等都影响数据访问的速度。可以采用多次查询、定位查询、和查询数据量控制来解决。7. 锁或者死锁 锁或者死锁在数据库数据访问时会造成访问者等待时间过程或者永久无法获取到资源。这是查询慢最常见的因素之一,是程序设计的缺陷,要尽量避免。8. 返回不必要的行和列 在一般的数据查询中,都尽可能多的获取数据信息,这样造成了不必要的数据遍历,大大的增加了数据访问的响应的时间。所以在一般的查询中,尽量查询少的行和列,将数据遍历时间降到最低以满足数据输出需求。9. 查询语句不够优化 在数据查询访问过程中,使用最频繁的是使用自定义的查询语句进行数据输出的。所以编写优化的查询语句能够很大程度上提高数据查询访问的速度。2.2 性能优化 数据库性能优化主要是提高数据访问的速度,即提高数据库响应速度的性能指标。性能优化主要分为主观因素和客观因素两部分的优化。这里主要针对影响性能的客观因素进行优化。2.2.1 主观因素优化 主观因素主要是指服务器的硬件环境。主要优化有以下几个方面:1、 把数据、日志、索引放到不同的I/O设备上,增加读取速度,数据量越大,提高I/O吞吐量越重要;2、 纵向、横向分割表,减少表的尺寸(sp_spaceuse);3、 升级硬件;4、 提高网络访问速度;5、 扩大服务器的内存;配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置,一般设置为物理内存的1.5倍;如果安装了全文检索功能,并打算运行Microsoft搜索服务以便执行全文索引和查询,可考虑将虚拟内存大小设置为至少计算机中物理内存的3倍;6、 增加服务器CPU个数;其中并行处理比串行处理更需要资源。SQL SERVER根据系统负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询适合并行处理。不过更新操作UPDATE、INSERT、DELETE不能进行并行处理。 2.2.2 客观因素优化 客观因素主要指的是由于设计和开发中存在的缺陷和漏洞;主要优化有以下几个方面:1. 优化索引(1) 根据查询条件建立优化的索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建里索引(参照索引的创建),不要对有限的几个值的字段建立单一索引(如性别字段)。(2) 如果使用LIKE进行查询的话,简单的使用INDEX是不行的,全文索引又太耗费空间。LIKE ‘N%’使用索引,LIKE ‘%N’不使用索引。用LIKE‘%N%’查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型而采用VARCHAR。对于字段的值很长的字段建立全文索引。(3) 重建索引DBCC REINDEX,DBCC INDEXDEFRAG,收缩数据和日志DBCC SHRINKDB,DBCC SHRINKFILE。设置自动收缩日志,对与大的数据库不要设置数据库自动增长,它会降低服务器的性能。2. 数据库部署优化(1) DB SERVER和APPLICATION SERVER分离,OLTP和OLAP分离;(2) 使用分区视图。分布式分区视图可用于实现数据库服务器联合体,联合体是一组分开管理的服务器,他们互相协作分担系统的处理负荷。A、在实现分区视图之前,必须先水平分区表。B、在创建成员表后,在每个服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器都有一个原始表的复本一样,不过每个服务器上其实只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。3. 查询语句优化 T-SQL的写法上有很大的讲究,DBMS处理查询计划的过程是:a、查询语句的词法、语法检查;b、将语句提交给DBMS的查询优化器;c、优化器做代数优化和存取路径的优化;d、由预编译模块生成查询规划;e、在合适的时间提交给系统处理执行;f、将执行结果返回给用户。(1) COMMIT和ROLLBACK的区别:ROLLBACK回滚所有的事务;COMMIT提交当前的事务。在动态语句中写事务,请将事务写在外面,如:BEGIN TRAN EXEC(@SQL) COMMIT TRANS或者将动态SQL写成函数或者存储过程。(2) 在大数据两的查询输出SELECT语句中尽量不要使用自定义函数,调用自定义函数的函数时系统调用是一个迭代过程,很影响查询输出性能的。在查询字段时尽可能使用小字段两输出,并在WHERE子句或者使用SELECT TOP 10/1 PERCENT来限制返回的记录数,使用SET ROWCOUNT来限制操作的记录数,避免整表扫描。返回不必要的数据,不但浪费了服务器的I/O资源,加重了网络的负担,如果表很大的话,在表扫描期间将表锁住,禁止其他的联接访问,后过很严重的。(3) SQL的注释申明对执行查询输出没有任何影响。(4) 使用计算列对数据进行简单计算,尽量避免在查询语句中对数据进行运算。(5) 尽可能不使用光标,它会占用大量的资源。如果需要ROW-BY-ROW地执行,尽量采用非光标技术,如:客户端循环、临时表、TABLE变量、子查询、CASE语句等等。(6) 使用PROFILER来跟踪查询,得到查询所需的时间,找出SQL的问题所在,用索引优化器优化索引。(7) 注意UNION和UNION ALL的区别。在没有必要的时候不要用DISINCT,它同UNION一样会降低查询速度,重复的记录在查询里是没有问题的。(8) 用sp_configure ‘query governor cost limit’或者 SET QUERY_COVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的 资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。SET LOCKTIME 设置锁的时间。(9) 不要在WHERE子句中列名加函数,如CONVERT,SUBSTRING等,如果必须用函数的时候,创建计算列在创建索引来替代。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS、IN、LEFT OUTER JOIN来替代,其中EXISTS比IN更快,最慢的NOT操作。(10) 使用QUERY ANALYZER,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般20%的代码占用了80%的资源,优化的重点就是这些慢的地方。(11) 如果使用了IN或者OR等时发现查询没有走索引,使用显式申明指定索引,如:Select * From FA01(INDEX=IX_SEX) Where AA0107 IN(‘01’,‘02’)。(12) 在需要对已有数据进行比较复杂计算才能获得查询的结果数据时,将需要查询的结果预先计算好放在表中,查询的时候在SELECT。(13) 数据库有一个原则是代码离数据越近越好,所有有限选择DEFAULT,依次为RULES,CONSTRAINT,PROCEDURE来编写程序的质量高,速度快。如果要插入大的二进制到IMAGE列,使用存储过程,千万不要用内嵌INSERT直接插入。因为这样应用程序首先将二进制转换成字符串,服务器收到字符后又将他转换成二进制。存储过程直接传入二进制参数即可,处理速度明显改善,如:CREATE PROCEDURE image_insert @image varbinary as Insert into table(fImage) values(@image)。(14) Between在某些时候比IN速度更快,更快地根据索引找到范围。由于IN会比较多次,所以有时会慢些。(15) 尽量不要建没有作用的事务例如产生报表时,浪费资源,只有在必须使用事务时才建立合适的事务。(16) 用OR的字句可以分解成多个查询,并通过UNION连接多个查询。速度取决与是否使用索引。如果查询需要用联合索引,用UNION ALL执行的效率更高些。(17) 尽量少用视图,视图的效率低。对视图操作比直接对表操作慢,可以用SRORED PROCEDURE来代替。特别是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。视图是存放在服务器上的被优化好了的已经产生查询规划的SQL。对单表数据检索时,不要使用指向多表的视图,否则增加了不必要的系统开销,查询也会受到干扰。没有必要时不要用DISTINCT和ORDER BY,这些动作可以改在客户端执行,增加了额外的开销,这同UNION和UNION ALL原理相同。(18) 当使用SELECT INTO和CREATE TABLE时,会锁住系统表(SYSOBJECTS,SYSINDEXES等),从而阻塞其他的连接的存取。所以千万不要在事务内部使用。如果经常要用到临时表时请使用实表或者临时表变量。尽量少用临时表,用结果集和TABLE类型的变量来代替。(19) 在使用GROUP BY HAVING子句时,在使用前剔除多余的行,尽量避免使用HAVING子句剔除行工作。剔除行最优的执行顺序是:SELECT的WHERE子句选择所有合适的行,GROUP
I. SQLSERVER大数据库解决方案
在微软的大数据解决方案中,数据管理是最底层和最基础的一环。
灵活的数据管理层,可以支持所有数据类型,包括结构化、半结构化和非结构化的静态或动态数据。
在数据管理层中主要包括三款产品:SQLServer、SQLServer并行数据仓库和
Hadoop on Windows。
针对不同的数据类型,微软提供了不同的解决方案。
具体来说,针对结构化数据可以使用SQLServer和SQLServer并行数据仓库处理。
非结构化数据可以使用Windows Azure和WindowsServer上基于Hadoop的发行版本处理;而流数据可以使用SQLServerStreamInsight管理,并提供接近实时的分析。
1、SQLServer。去年发布的SQLServer2012针对大数据做了很多改进,其中最重要的就是全面支持Hadoop,这也是SQLServer2012与SQLServer2008最重要的区别之一。今年年底即将正式发布的SQLServer2014中,SQLServer进一步针对大数据加入内存数据库功能,从硬件角度加速数据的处理,也被看为是针对大数据的改进。
2、SQLServer并行数据仓库。并行数据仓库(Parallel Data Warehouse Appliance,简称PDW)是在SQLServer2008 R2中推出的新产品,目前已经成为微软主要的数据仓库产品,并将于今年发布基于SQLServer2012的新款并行数据仓库一体机。SQLServer并行数据仓库采取的是大规模并行处理(MPP)架构,与传统的单机版SQLServer存在着根本上的不同,它将多种先进的数据存储与处理技术结合为一体,是微软大数据战略的重要组成部分。
3、Hadoop on Windows。微软同时在Windows Azure平台和WindowsServer上提供Hadoop,把Hadoop的高性能、高可扩展与微软产品易用、易部署的传统优势融合到一起,形成完整的大数据解决方案。微软大数据解决方案还通过简单的部署以及与Active Directory和System Center等组件的集成,为Hadoop提供了Windows的易用性和可管理性。凭借Windows Azure上基于Hadoop的服务,微软为其大数据解决方案在云端提供了灵活性。