当前位置:首页 » 操作系统 » 算法岗大爆炸

算法岗大爆炸

发布时间: 2022-05-06 00:19:58

算法和开发岗相比,哪个前景更好呢

这两个岗位的工作内容我都接触过,目前我带的大数据团队中既有算法工程师也有开发工程师,所以我说一说这两个岗位的区别,以及未来的发展方向。

算法设计与算法实现
通常涉及到算法的岗位有两个,分别是算法设计和算法实现,现在有不少团队把这两个岗位进行合并,做算法设计的同时也要负责实现。但是也有一些团队是分开的,做算法设计的不管实现过程。
算法岗位门槛是很高的,人才也是稀缺的,总体发展空间很好。还有一点算法岗位的不可替代性强,如果有机会去算法岗建议是去的,一般学历要求在硕士,java本科大专都是可以的哈。从工作的复杂性上来说,算法工程师的工作强度还是比较大的,但是算法工程师的职业周期也比较长。
算法岗主要是在于如何量化我们的产出,写代码做开发非常简单。你完成了一个任务或者是项目,有了经验之后,这是在简历上实打实的东西。很多算法工程师最终成长为企业的首席科学家,或者是首席技术官等岗位,可以说算法工程师的发展前景还是非常不错的。
开发岗位
软件团队的大部分岗位都是开发岗位,有前端开发、后端开发、移动端开发等,可以说大部分程序员做的都是开发岗的工作。
与算法岗位不同的是,开发岗位人数多,占比大,而且大部分开发岗位的职业周期都比较短,一般开发岗位在做到一定年龄(比如35岁)之后都会转型。一部分会转向项目经理等管理岗位,一部分会转型做架构师,还有一部分转型为行业咨询专家等,当然,也有一部分开发人员转型为算法工程师。
一个优秀的开发者不是网上说的那样吃青春烦的,每一个岗位都会有自己的未来职业发展。开始确实是青春饭,因为大多数人不懂如何提升自己在公司当中的潜在价值,或者不知道如何更加聪明的完成任务。
其实两个岗位没有什么可比性。聊聊这两个岗位的突出项,开发门槛不很高的,算法就相对高一些,因为涉及大数据人工智能等等。现在做算法的话,5年左右基本会成为专家,给别人讲,因为大多数的人是不太懂算法的,所以会觉得你很牛。收入上来说,算法的收入是高于开发的。创业的话,大白话就是算法其实是更容易给别人讲故事的,而且相对产品来说,算法是更容易形成产品的。

㈡ 你觉得算法工程师的就业前景如何

随着大数据和人工智能领域的不断深入发展,自然语言处理、机器学习等方向成为求职的大热门,算法工程师也自然而然成为目前最炙手可热的岗位。虽然算法工程师一直被频频提及,但是许多人对这个岗位的了解还知之甚少。那么算法工程师究竟是做什么的?发展前景怎么样呢?

由于算法工程师对于知识结构的要求比较丰富,同时算法工程师岗位主要以研发为主,需要从业者具备一定的创新能力,所以要想从事算法工程师岗位往往需要读一下研究生,目前不少大型科技企业对于算法工程师的相关岗位也有一定的学历要求。

㈢ 为什么一线互联网公司的校招高薪都是算法类

高端工程类岗位所需要的能力,高校很难培养出来。中低端工程类岗位,可能确实不太值钱。

。算法类因为一些历史遗留问题,大公司之前懂得人不多,而学校确实有些老师是行家里手,学生也可以在某一个小领域,做到精通。

这推高了前两年算法领域的校招价。然而,随着公司相关人才越来越多,算法类的稀缺性也在下降。另外,现在很多技术比较好的组也比较认清了,高端算法类毕业生已经不能靠论文数量,甚至已经不能靠发的会议质量了。

㈣ 基础数学专业研究生能成为算法工程师吗

可以,但是不建议。
第一,从2018年秋招情况来看,目前算法岗已经爆炸,报录比例惊人,大部分人都很难找到合适的算法岗位。
第二,现在大家一窝蜂的都转行做算法,你们想想毕业找工作的时候压力得有多大。
第三,往计算机方向转一定要选对小方向。其实互联网行业很多研发岗位非常缺人(测试开发、安卓ios客户端开发、java前端、大数据开发),但校招却没几个人愿意投(因为大家都在投算法岗)。
第四,最后很多想做算法的人内心os大概是这样的:“算法多高大上啊说出去也好听,我要是研究生毕业去做安卓开发,那多“掉价”啊”;“做算法不需要了解那么多枯燥的计算机基础知识,我也没功夫花大量时间去训练我的代码能力,只要数学过关就行”。

㈤ 211计算机博士还是中厂开发

人工智能在大公司里面坑位最多的其实是算法岗,我有次跟算法岗的主管聊天,他说只看三个东西,paper、学校、竞赛,当然鉴于算法与工程开发普遍存在的循环BS链,你如果两方面都发展一下,不管应聘哪边,都是个很大的亮点。
以你描述的情况来看,进大厂做算法有点难。相比开发岗,算法岗的坑真心不多,小公司养不起,大公司个顶个的高学历、海外顶级高校、ACM竞赛拿奖之类的。还有一个关键问题,在以业务为导向的研发团队中,算法绝大多数时候是助攻。
个人的看法,所谓的人工智能被社会变相抬得太高了,过去几年学术界大牛转到工程界再回到学术的两次风潮就能明显看出问题来。它与开发岗的维度不一样,所有线上的东西要落地都离不开工程,而只有少数场景需要人工智能的介入。
软件工程领域这些年不断被拆分、抽象、沉淀、输出,绝大部分的工程师越来越只需要关注业务向技术的转换了,至于技术的实现,云计算、各种中间件、脚手架、标准流程等,让过程变得很越来越简单。
算法领域会不会出现这样的情况?有次跟负责支撑我们业务线的算法主管聊天,他提到自己要学一些工程知识,以免哪天被软件工程师给替代掉。而我收到的一些外国工程师简历中,大多就写了自己精通人工智能,仔细问下来,了解常见的场景及、模型、框架,不是太偏门的问题都能自闭环。

㈥ 算法工程师的就业前景如何

人工智能工作最受欢迎。算法工程师平均招聘工资建议达到25978元。由于人才匮乏,企业竞争激烈,平均加薪超过7%。该市90%以上的人工智能高薪工作都在天河区.近日,由广州天河人才港和BOSS直接就业研究院联合发布的《广州市天河区2018年1-4月人才趋势报告》,展示了该地区的主流发展趋势:IAB已经成为天河区,和天河区创新型企业和大型企业布局或发展的核心主方向,企业以高薪吸引更多的行业优秀人才。“天河区企业渴望以高薪攫取IAB人才,这意味着企业要在这些行业中发挥实力。

㈦ 研究生做算法还是开发

研究生做开发的比较常见,做算法的比较少,很多公司算法岗的hc比开发岗少很多,足以见得算法岗的难和门槛高。

㈧ 计算机开发岗和算法岗都有些什么区别

其实只有在大厂这两个岗位才会被分的很清楚,小公司的话一般都是混着用,毕竟算法工程师都很贵,得保证利益最大化才行。

算法岗

这种岗位负责新算法的研发工作和论文的解读、编写,一般存在于一些大厂的实验室,比如国内的阿里、网络、腾讯、华为,国外的openAI、脸书、deepmind等。而且学历和专业要求极高,基本都是科班的名校硕士或者博士,这也是网传的算法门槛高的真正岗位,高学历保证了技术水准的同时也保证了技术员的学习接收能力,保证了国外如果有新的技术论文可以第一时间解读和实践。

算法工程师岗

目前我就是这个岗位,主要是负责将已经成熟的技术结合到商业项目中偏向业务一些,这个这个岗位就没有算法岗那么夸张,基本上只要是好一点的本科计算机专业就够满足面试要求了,目前商汤、旷视、寒武纪这些都偏向这个方向。

其实还有第三档的公司主要做的是产品,基本上就是调用模型然后应用到一些软件中去,来优化产品功能,基本上懂一些算法的开发就能做到这项工作。

㈨ 男朋友算法工程师好么

这周面试了一个候选人,面CV/DL/AI的TechLead。简历很牛逼,做过很多CV的工业项目,涵盖detection, OCR, face recognition, fire/smoke detection等好多项目. 给我们讲了45分钟做得项目,讲得很自信。我挑了一个大项目,我说你在这个项目中的贡献是什么?他说整个项目的所有算法部分都是他实现的。

OK,我开始进行深度学习的技术面。

我先问了两个深度学习的中等难度的问题,他都说不知道。有点冷场,那我赶紧问点简单的吧。我说,深度学习网络,进行分类时有哪些loss?他犹豫了一下,回答: relu.

瞬间把见过大场面的我还有同事都震住了。

面试另外一个人,我说目前我们检测主要用yolo,他反问了一句,怎么不用tensorflow?

......

算法工程师的目标既不是精通各种框架,会调各种包,也不是会发paper就是成功,而是有能力解决实实在在被提出的算法问题。

这里的问题可能来源于业务,也可能来源于长远的战略部署,甚至可能来源于一次大领导的拍脑袋。不管怎么说,个人觉得能独立分析,拆解,建模和解决算法问题的算法工程师就是胜任的,否则再怎么花里胡哨都是差劲的。

从反面回答一下,我碰到什么样的算法工程师会认为他/她是优秀甚至是卓越的大佬,并选择紧紧抱住大腿不松手。

本文很多观点也是来源于不同公司的前辈们讨论过这个问题,这里也感谢大家的指点。总得来说,以下几个特点是我特别留意的,如果碰到了我就会认为这位很厉害:

基础非常扎实。问他/她一些比较经典的算法,能够很清晰地说出算法的特点、适用的场景、坑点、里面的细节等等。
工程能力很强。我是一位“工程狗”,自己的工程能力很菜,但对工程能力强的同学非常崇拜 Orz 如果碰到一位算法工程师的工程能力很强,仅凭这一点,我就认为他/她基本上一定是大佬Orz
重视代码的测试。算法岗的工作并不完全就是调参炼丹,往往也是需要去写一些代码的,例如写些spark/sql代码获得特征,写模型等等。既然是写代码,就可以而且应该在其中加上测试。实际上,根据我的经验,如果碰到某个其他地方好用的模型在自己的场景下效果很差(不reasonable得差),那很可能是数据、特征的处理代码有问题,或者模型的代码有问题。这种问题可以用单元测试(断言等)来提前发现,也可以用一些sanity check来发现。
对场景业务的认识很深刻。软件工程没有银弹, 机器学习也没有银弹。 用什么样的特征、什么样的预估目标、什么样的评价指标、甚至什么样的模型,这些东西都是要与场景业务结合的。换言之,工业届里,业务先于技术。很多大神在这个方面做得尤其出色。
在实际场景中,注重先把整个pipeline搭建起来。个人认为,这一点在实际应用中往往应该是最优先的。搭建起来之后,机器学习系统的上下游也都可以工作,也可以更好地判断系统的瓶颈所在,把好刚用在刀刃上。这其实就与做开发的程序设计一样,较早地抽象出比较好的接口、搭建一个系统原型是很重要的。
能够持续学习新的知识,跟踪最新的成果,对各种模型的motivation有自己的理解,有自己的insight与vision。这里举几个我自己学习过程中碰到的例子来说明一下这点。例如,推荐系统中,在Youtube 16年的推荐paper中,为何step1和step2的优化目标是不一样的?人脸检测中,MTCNN为何要分为多阶段?landmark检测中,3000FPS为何要分为两个阶段?(这些是设计相关的motivation)Google的wide&deep为何在Google store的场景下效果好,而在其他的场景下效果不一定好(这是对场景的motivation理解)?文字检测中,PixelLink为何要引入link?OCR中,CRNN为何要引入一个RNN?机器学习系统中,LightGBM是如何针对xgboost存在的哪些缺点进行改进的?(这些是对改进的motivation理解)我认识的一些大佬们会主动结合文章思考这些问题,有的时候会有与paper所claim的不同的理解(毕竟写paper的story很多时候也不一定靠谱,大家都懂),甚至还会做实验验证自己的理解。然后拿这些问题来考我,在我思考不出来后再告诉我他们的理解与实验结果Orz
做多数实验之前有自己的假设,根据实验结果会根据实验结果做进一步实验,或修正假设、或进一步探究。
自己参与的项目,对其中与自己比较相关的内容的细节比较清楚,自己负责的部分能够了如指掌。
能系统性地分析出机器学习整个系统的瓶颈所在,并提出相应的解决方案。当系统效果不好的时候,知道如何去debug,找到问题所在,改进系统的性能

㈩ 算法岗和开发岗哪个好

你玩呢,算法还不是开发岗的一种啊,你会写算法还不是算作开发,你会开发也要懂基本的算法啊

热点内容
安卓手机蓝牙默认地址在哪里 发布:2025-01-18 03:47:57 浏览:906
shell脚本文件路径 发布:2025-01-18 03:40:31 浏览:483
sql语句执行错误 发布:2025-01-18 03:21:49 浏览:651
数据库双引号 发布:2025-01-18 03:10:20 浏览:79
学java和php 发布:2025-01-18 03:01:03 浏览:452
怎么开服务器的端口 发布:2025-01-18 02:54:23 浏览:648
别克君越编程 发布:2025-01-18 02:32:24 浏览:914
ftp游戏下载网站 发布:2025-01-18 02:09:04 浏览:628
python调用另一个文件中的函数 发布:2025-01-18 02:03:54 浏览:597
mysql存储html 发布:2025-01-18 01:57:24 浏览:129