回归算法模型
㈠ 什么是线性回归模型
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。(这反过来又应当由多个相关的因变量预测的多元线性回归区别,】,而不是一个单一的标量变量。)
回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
㈡ 回归分析模型有哪些种类
如果因变量是(非时间的)连续变量(即一般定量资料),设自变量的个数为k,当k=1时,回归分析的种类有:①直线回归分析;②通过直线化实现的简单曲线回归分析(以下简称为曲线拟合);③非线性曲线拟合;④一般多项式曲线拟合;⑤正交多项式曲线拟合。当k≥2时,称为多元回归分析(注:前面的④、⑤2种情况实质上是用多元回归分析仅只含1个自变量时较复杂的曲线拟合问题)。当同时对多个因变量进行回归分析时,称之为多重回归分析。在多元回归分析中,简单而又实用的则是多元线性回归分析(其中某些自变量可以是原观测指标经过某种初等变换的结果,如对数变换、开平根变换等,因为这里所说的线性是指∶函数f(x)相对于回归参数是线性的,并非相对于自变量而言)。这是本篇中要论述的问题。
如果因变量是与时间有关的连续变量且未被离散化(如:生存时间、复发时间、死亡时间等),而自变量可以是定量的,也可以是定性的。此时需用生存分析中的半参数或参数回归分析方法,将在本书第5篇中论述。
如果因变量是名义或有序变量,无论它取二个离散值(如:死与活、复发与未复发等)还是多个离散值(自变量可以是定性和定量的)时,都可选用logistic回归分析;如果把列联表中每个格内的理论频数的对数当作因变量,把分组变量(包含影响因素和观测结果变量2类)当作自变量,可用对数线性模性分析。这部分内容请参见本书第3篇中有关章节。在自变量代表时间的情况下,通常不假定因变量y的各次观察值独立,而具有某种非独立的结构,例如构成一平稳序列。这种回归模型的研究被划入统计学的另一个重要分支──时间序列统计分析的范围
㈢ 回归模型的优点和缺点
一、优点
1、它表明自变量和因变量之间的显着关系;
2、它表明多个自变量对一个因变量的影响强度。
回归分析也允许去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
二、缺点
回归模型比较简单,算法相对低级。
(3)回归算法模型扩展阅读
应用
相关分析研究的是现象之间是否相关、相关的方向和密切程度,一般不区别自变量或因变量。而回归分析则要分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系。
比如说,从相关分析中我们可以得知“质量”和“用户满意度”变量密切相关,但是这两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,则需要通过回归分析方法来确定。
一般来说,回归分析是通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。
例如,如果要研究质量和用户满意度之间的因果关系,从实践意义上讲,产品质量会影响用户的满意情况,因此设用户满意度为因变量,记为Y;质量为自变量,记为X。通常可以建立下面的线性关系: Y=A+BX+§。
式中:A和B为待定参数,A为回归直线的截距;B为回归直线的斜率,表示X变化一个单位时,Y的平均变化情况;§为依赖于用户满意度的随机误差项。
㈣ 回归模型的经济意义解释,求指导
回归系数的经济意义是说明x每变化一个单位时,影响y平均变动的数量。即x每增加1单位,y变化b个单位。就是通过影响一个可变的经济意义的值,来预测我们产生的经济结果。通过以前阶段的经济发展状况的分析,预测未来经济发展,对经济发展规划,达到经济利益最大化有重大意义。
拓展资料:
1.回归模型是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
2.回归分析的几种常用方法:
1)Linear Regression线性回归:线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。关系式为:Y=a+b×X+e
2)Logistic Regression逻辑回归:逻辑回归是用来计算“事件成功”和“事件失败”的概率。这里,Y的值从0到1,它可以用下方程表示。Y=p/(1-p)
3.Polynomial Regression多项式回归
y=a+bx^2
4.Stepwise Regression逐步回归
在处理多个自变量时,我们可以使用这种形式的回归。标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。
向前选择法从模型中最显着的预测开始,然后为每一步添加变量。
向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显着性的变量。
5.. Ridge Regression岭回归
岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。
㈤ 广义线性回归模型有哪些
从逻辑回归模型开始,我们连续讲了好多集有些相似又特点各异的几种统计模型。它们有个统一的旗号,叫做“广义线性模型”(generalized linear model)。 许多在大学里学过一点统计的读者,可能对广义线性模型还是会感到比较陌生。为什么这些模型能被归为一个大类?它们的共同点在哪里?今天我们就和大家一块再来系统地认识一下,广义线性模型到底是何方神圣。
在耐着性子把这篇文章读完之前,大家肯定会想,为什么要学习广义线性模型呢?毕竟光是理解线性模型的各种用法就已经够头疼的了,再加个广义更绕不清楚了。
普通线性模型对数据有着诸多限制,真实数据并不总能满足。而广义线性模型正是克服了很多普通线性模型的限制。在笔者的心里,广义模型能解决的问题种类比普通线性模型多很多,用图来表示,大概就是这样的:
图一:定性对比广义线性模型和普通线性模型的能解决的问题多少
我们前面通过讨论逻辑回归、定序回归以及泊松回归模型,已经带着读者们在广义线性模型的世界里面转了一大圈。今天,我们将要回到广义线性模型的本质,从广义线性模型的三个要素——线性预测、随机性和联系函数入手,在理论层面系统深入地了解广义线性模型。
各路线性模型的共同点:线性预测
不管是普通线性模型,还是广义线性模型,既然打着“线性模型”旗号,总该是有个原因的吧?这里的“线性”指的是多个自变量的“线性组合”对模型预测产生贡献,也叫做线性预测,它具有类似于下面的形式:
这个形式读者们已经非常熟悉了,因为之前讲的所有模型使用的都是线性预测。
统计模型中的β0、β1、β2等是模型的参数,如果把模型看成是一个音箱,这些参数就像看是音箱上一个个控制声音的旋钮。为啥音箱得要怎么多旋钮呢?因为虽然拧每一个旋钮达到的效果不同,可能β0管的是低音炮部分,β1管的是中音区,β2管的是高音区,模型里面需要这么多参数也是为了控制各种自变量对因变量的影响的。
为什么各种常用的模型都选择线性预测呢?当我们调节某一个旋钮的时候,我们当然希望声音的效果与旋钮拧了多少成正比,如果拧了一圈声音跟蚊子叫一样,而拧了两圈声音突然震耳欲聋,这样的音箱用起来就得经过反反复复地调节才能找到最佳音量,非常的不方便。统计模型的在寻找最优参数的时候做得就是调节音量这件事,使用线性预测使得β0、β1、β2这些参数改变的值与预测的结果的改变值成正比,这样才能有效地找到最佳参数。
“随机性”— 统计模型的灵魂
我们之所以会建立统计模型,是想研究自变量(模型的输入)与因变量(模型的输出)之间的定量关系。通过模型计算出来的自变量的预测值与因变量的测量值越接近,就说明模型越准确。
虽然在建立模型时,我们希望统计模型能准确地抓住自变量与因变量之间的关系,但是当因变量能够100%被自变量决定时,这时候反而没有统计模型什么事了。典型的例子是中学时学习的物理定律,我们都知道,物体的加速度与它受的合力大小成正比,也就是说给定物体的质量和受力大小,加速度是一个固定的值,如果你答题的时候写,“有一定的概率是a,也有一定的概率是b”,物理老师肯定会气得晕过去。
统计模型的威力就在于帮助我们从混合着噪音的数据中找出规律。假设这个世界还没有人知道物体受的合力大小与加速度成正比,为了验证这一假说, 你仔细测了小滑块 在不同受力条件下的加速度,但由于手抖眼花尺子烂等等理由,哪怕是同样的受力,多次测量得到的加速度也会不一样,具有一定的随机性。也就是说,由于测量误差的存在,测量到的加速度(因变量y)与物体的受力大小(自变量x)之间不是严格的正比关系。
统计模型是怎样从具有随机性的数据中找到自变量和因变量之间的关系的呢?原因在于是随机误差也是有规律的。在测量不存在系统性的偏差的情况下,测量到的加速度会以理论值为平均值呈正态分布,详情可回顾《正态分布到底是怎么来的?| 协和八》。抓住这一统计规律,统计模型就能帮我们可以透过随机性看到自变量与因变量之间的本质联系,找出加速度与受力大小的关系。
㈥ 机器学习的方法之回归算法
我们都知道,机器学习是一个十分实用的技术,而这一实用的技术中涉及到了很多的算法。所以说,我们要了解机器学习的话就要对这些算法掌握通透。在这篇文章中我们就给大家详细介绍一下机器学习中的回归算法,希望这篇文章能够帮助到大家。
一般来说,回归算法是机器学习中第一个要学习的算法。具体的原因,第一就是回归算法比较简单,可以让人直接从统计学过渡到机器学习中。第二就是回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习其他的算法。而回归算法有两个重要的子类:即线性回归和逻辑回归。
那么什么是线性回归呢?其实线性回归就是我们常见的直线函数。如何拟合出一条直线最佳匹配我所有的数据?这就需要最小二乘法来求解。那么最小二乘法的思想是什么呢?假设我们拟合出的直线代表数据的真实值,而观测到的数据代表拥有误差的值。为了尽可能减小误差的影响,需要求解一条直线使所有误差的平方和最小。最小二乘法将最优问题转化为求函数极值问题。
那么什么是逻辑回归呢?逻辑回归是一种与线性回归非常类似的算法,但是,从本质上讲,线型回归处理的问题类型与逻辑回归不一致。线性回归处理的是数值问题,也就是最后预测出的结果是数字。而逻辑回归属于分类算法,也就是说,逻辑回归预测结果是离散的分类。而逻辑回归算法划出的分类线基本都是线性的(也有划出非线性分类线的逻辑回归,不过那样的模型在处理数据量较大的时候效率会很低),这意味着当两类之间的界线不是线性时,逻辑回归的表达能力就不足。下面的两个算法是机器学习界最强大且重要的算法,都可以拟合出非线性的分类线。这就是有关逻辑回归的相关事项。
在这篇文章中我们简单给大家介绍了机器学习中的回归算法的相关知识,通过这篇文章我们不难发现回归算法是一个比较简答的算法,回归算法是线性回归和逻辑回归组成的算法,而线性回归和逻辑回归都有自己实现功能的用处。这一点是需要大家理解的并掌握的,最后祝愿大家能够早日学会回归算法。
㈦ 逻辑回归算法原理是什么
逻辑回归就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,测试验证这个求解的模型的好坏。
Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别)。回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率。
Logistic回归模型的适用条件
1、因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。但是需要注意,重复计数现象指标不适用于Logistic回归。
2、残差和因变量都要服从二项分布。二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。
3、自变量和Logistic概率是线性关系。
以上内容参考:网络-logistic回归
㈧ 多元线性回归模型的计算模型
一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量X1,X2…Xk为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为:
Y=b0+b1x1+…+bkxk+e
其中,b0为常数项,b1,b2…bk为回归系数,b1为X1,X2…Xk固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数;同理b2为X1,X2…Xk固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为:
y=b0 +b1x1 +b2x2 +e
建立多元线性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是:
(1)自变量对因变量必须有显着的影响,并呈密切的线性相关;
(2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的;
(3)自变量之间应具有一定的互斥性,即自变量之间的相关程度不应高于自变量与因变量之因的相关程度;
(4)自变量应具有完整的统计数据,其预测值容易确定。
多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为
解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得
即
㈨ 回归算法有哪些
一张图为你解释清楚回归算法
㈩ 回归模型找哪些数据
回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数。
εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。
回归模型是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
回归分析
回归模型重要的基础或者方法就是回归分析,回归分析是研究一个变量(被解释变量)关于另一个(些)变量(解释变量)的具体依赖关系的计算方法和理论,是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。