当前位置:首页 » 操作系统 » 神经网络算法优缺点

神经网络算法优缺点

发布时间: 2022-05-05 13:26:20

① 人工神经网络的特点优点

人工神经网络的特点和优越性,主要表现在三个方面:
第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。
第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

② BP神经网络的核心问题是什么其优缺点有哪些

人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最着名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.

  • 多层前向BP网络的优点:

  • 网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

  • 网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;

  • 网络具有一定的推广、概括能力。

  • 多层前向BP网络的问题:

  • 从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;

  • 网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

  • 难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;

  • 网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;

  • 新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;

  • 网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律

  • 由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

  • 存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;

  • 为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

③ 神经网络技术的优点有哪些

神经网络技术对完成对微弱信号的检验和对各传感器信息实时处理,具有自适应自学习功能,能自动掌握环境特征,实现自动目标识别及容错性好,抗干扰能力强等优点。神经网络技术特别适用于密集信号环境的信息处理、数据收集目标识别、图像处理、无源探测与定位以及人机接口等方面,因而在作战指挥方面有广泛的应用前景。

④ 神经网络算法的局限性

神经网络算法的局限性是:可以使用均值函数但是这个函数将获取嵌入的平均值,并将其分配为新的嵌入。但是,很容易看出,对于某些不同的图,它们会给出相同的嵌入,所以,均值函数并不是单射的。

即使图不同,节点 v 和 v’ 的平均嵌入聚合(此处嵌入对应于不同的颜色)将给出相同的嵌入。

这里真正重要的是,你可以先用某个函数 f(x) 将每个嵌入映射到一个新的嵌入,然后进行求和,得到一个单射函数。在证明中,它们实际上显式地声明了这个函数 f,这需要两个额外条件,即 X 是可数的,且任何多重集都是有界的。

并且事实上,在训练中并没有任何东西可以保证这种单射性,而且可能还会有一些图是 GIN 无法区分的,但WL可以。所以这是对 GIN 的一个很强的假设,如果违反了这一假设,那么 GIN 的性能将受到限制。

神经网络算法的普适性是:

研究模型的局限性通常更容易获得对模型的洞察。毕竟,网络所不能学到的关于特定特征的知识在应用时独立于训练过程。

此外,通过帮助我们理解与模型相关的任务的难度,不可能性结果(impossibility result)有助于得出关于如何选择模型超参数的实用建议。

以图分类问题为例。训练一个图分类器需要识别是什么构成了一个类,即在同一个类而非其他类中找到图共享的属性,然后决定新的图是否遵守所学习到的属性。

然而,如果可以通过一定深度的图神经网络(且测试集足够多样化)证明上述决策问题是不可能的,那么我们可以确定,同一个网络将不会学习如何正确地对测试集进行分类,这与使用了什么学习算法无关。因此,在进行实验时,我们应该把重点放在比下限更深的网络上。

⑤ 神经网络算法相对于普通的算法的优越性在哪啊! 例如在曲线拟合方面与基本的命令有什么区别 信号处理不也

优点:
(1)对特征数据无要求,不需相互独立
(2)适用于非线性问题;
缺点:
(1)黑箱,即难以解释其运算结果;
(2)需要较多的训练数据;
(3)存在过拟合;

⑥ 神经网络算法 遗传算法 模糊算法 哪个好

没有哪种算法更好的说法,因为每种算法都有自己的优势。只能说某种算法在处理某种问题时,效果更好更合适。

  1. 神经网络不能说是一种算法,它是一种数学网络结构,各神经元的权值、阈值是用某种训练算法计算出来的。神经网络适用于非线性系统,可用于难以用数学表达式来描述的系统。

  2. 遗传算法在全局寻优问题上效果很好,因其收敛速度较快,且不易陷入局部极小点。其中实数编码法适合与神经网络结合,例如GA-BP神经网络。

  3. 模糊算法可将一些难以量化的参数模糊处理,并且算法较简单,尤其是适用于专家经验占主要地位的系统,因为添加一条专家经验只需往规则库里添加一条语句即可。用这种算法要注意区间不能划得太宽,否则算法太不精确。

⑦ BP神经网络的可行性分析


神经网络的是我的毕业论文的一部分
4.人工神经网络
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
4.1人工神经网络学习的原理
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
4.2人工神经网络的优缺点
人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:
(1)并行分布性处理
因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。
(2)可学习性
一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。
(3)鲁棒性和容错性
由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。
(4)泛化能力
人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。
(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。
虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:
(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)神经网络的理论和学习算法还有待于进一步完善和提高。
4.3神经网络的发展趋势及在柴油机故障诊断中的可行性
神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。
但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:
(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。
(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。
(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。
(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。
虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。
根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。
离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。

二、离心式制冷压缩机的特点与特性

离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点:

(1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。

(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。

(3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。

(4)能经济方便的调节制冷量且调节的范围较大。

(5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。

(6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。

制冷与冷凝温度、蒸发温度的关系。

由物理学可知,回转体的动量矩的变化等于外力矩,则

T=m(C2UR2-C1UR1)

两边都乘以角速度ω,得

Tω=m(C2UωR2-C1UωR1)

也就是说主轴上的外加功率N为:

N=m(U2C2U-U1C1U)

上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2

ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷

W=U2C2U-U1C1U≈U2C2U

(因为进口C1U≈0)

又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2)

故有

W= U22(1-

Vυ1

ctgβ)

A2υ2U2

式中:V—叶轮吸入蒸汽的容积流量(m3/s)

υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg)

A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s)

β—叶片安装角

由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。

按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。

三、离心式制冷压缩机的调节

离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。

⑧ 人工神经网络评价法

人工神经元是人工神经网络的基本处理单元,而人工智能的一个重要组成部分又是人工神经网络。人工神经网络是模拟生物神经元系统的数学模型,接受信息主要是通过神经元来进行的。首先,人工神经元利用连接强度将产生的信号扩大;然后,接收到所有与之相连的神经元输出的加权累积;最后,将神经元与加权总和一一比较,当比阈值大时,则激活人工神经元,信号被输送至与它连接的上一层的神经元,反之则不行。

人工神经网络的一个重要模型就是反向传播模型(Back-Propagation Model)(简称BP模型)。对于一个拥有n个输入节点、m个输出节点的反向传播网络,可将输入到输出的关系看作n维空间到m维空间的映射。由于网络中含有大量非线性节点,所以可具有高度非线性。

(一)神经网络评价法的步骤

利用神经网络对复垦潜力进行评价的目的就是对某个指标的输入产生一个预期的评价结果,在此过程中需要对网络的连接弧权值进行不断的调整。

(1)初始化所有连接弧的权值。为了保证网络不会出现饱和及反常的情况,一般将其设置为较小的随机数。

(2)在网络中输入一组训练数据,并对网络的输出值进行计算。

(3)对期望值与输出值之间的偏差进行计算,再从输出层逆向计算到第一隐含层,调整各条弧的权值,使其往减少该偏差的方向发展。

(4)重复以上几个步骤,对训练集中的各组训练数据反复计算,直至二者的偏差达到能够被认可的程度为止。

(二)人工神经网络模型的建立

(1)确定输入层个数。根据评价对象的实际情况,输入层的个数就是所选择的评价指标数。

(2)确定隐含层数。通常最为理想的神经网络只具有一个隐含层,输入的信号能够被隐含节点分离,然后组合成新的向量,其运算快速,可让复杂的事物简单化,减少不必要的麻烦。

(3)确定隐含层节点数。按照经验公式:

灾害损毁土地复垦

式中:j——隐含层的个数;

n——输入层的个数;

m——输出层的个数。

人工神经网络模型结构如图5-2。

图5-2人工神经网络结构图(据周丽晖,2004)

(三)人工神经网络的计算

输入被评价对象的指标信息(X1,X2,X3,…,Xn),计算实际输出值Yj

灾害损毁土地复垦

比较已知输出与计算输出,修改K层节点的权值和阈值。

灾害损毁土地复垦

式中:wij——K-1层结点j的连接权值和阈值;

η——系数(0<η<1);

Xi——结点i的输出。

输出结果:

Cj=yj(1-yj)(dj-yj) (5-21)

式中:yj——结点j的实际输出值;

dj——结点j的期望输出值。因为无法对隐含结点的输出进行比较,可推算出:

灾害损毁土地复垦

式中:Xj——结点j的实际输出值。

它是一个轮番代替的过程,每次的迭代都将W值调整,这样经过反复更替,直到计算输出值与期望输出值的偏差在允许值范围内才能停止。

利用人工神经网络法对复垦潜力进行评价,实际上就是将土地复垦影响评价因子与复垦潜力之间的映射关系建立起来。只要选择的网络结构合适,利用人工神经网络函数的逼近性,就能无限接近上述映射关系,所以采用人工神经网络法进行灾毁土地复垦潜力评价是适宜的。

(四)人工神经网络方法的优缺点

人工神经网络方法与其他方法相比具有如下优点:

(1)它是利用最优训练原则进行重复计算,不停地调试神经网络结构,直至得到一个相对稳定的结果。所以,采取此方法进行复垦潜力评价可以消除很多人为主观因素,保证了复垦潜力评价结果的真实性和客观性。

(2)得到的评价结果误差相对较小,通过反复迭代减少系统误差,可满足任何精度要求。

(3)动态性好,通过增加参比样本的数量和随着时间不断推移,能够实现动态追踪比较和更深层次的学习。

(4)它以非线性函数为基础,与复杂的非线性动态经济系统更贴近,能够更加真实、更为准确地反映出灾毁土地复垦潜力,比传统评价方法更适用。

但是人工神经网络也存在一定的不足:

(1)人工神经网络算法是采取最优化算法,通过迭代计算对连接各神经元之间的权值不断地调整,直到达到全局最优化。但误差曲面相当复杂,在计算过程中一不小心就会使神经网络陷入局部最小点。

(2)误差通过输出层逆向传播,隐含层越多,逆向传播偏差在接近输入层时就越不准确,评价效率在一定程度上也受到影响,收敛速度不及时的情况就容易出现,从而造成个别区域的复垦潜力评价结果出现偏离。

⑨ 神经网络,tansig函数和logsig函数的优缺点!

试试将训练函数变为trainlm,这个比较快速精度也高。梯度下降法有时会出问题的。 traingdm是带动量的梯度下降法,trainlm是指L-M优化算法,trainscg是指量化共轭梯度法,除此之外还有traingdx、traingda等,都是权值的训练算法。看MATLAB结合神经网络的基础书上都有介绍。 tansig和logsig 统称Sigmoid函数,logsig是单极性S函数,tansig是双极性S函数,也叫双曲正切函数,purelin是线性函数,是节点的传输函数。

⑩ 最小二乘法、回归分析法、灰色预测法、决策论、神经网络等5个算法的使用范围及优缺点是什么

最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。优点:实现简单,计算简单。缺点:不能拟合非线性数据.
回归分析法:指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。优点:在分析多因素模型时,更加简单和方便,不仅可以预测并求出函数,还可以自己对结果进行残差的检验,检验模型的精度。缺点:回归方程式只是一种推测,这影响了因子的多样性和某些因子的不可测性,使得回归分析在某些情况下受到限制。
灰色预测法:
色预测法是一种对含有不确定因素的系统进行预测的方法 。它通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。它用等时间距离观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或者达到某一特征量的时间。优点:对于不确定因素的复杂系统预测效果较好,且所需样本数据较小。缺点:基于指数率的预测没有考虑系统的随机性,中长期预测精度较差。
决策树:在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。优点:能够处理不相关的特征;在相对短的时间内能够对大型数据源做出可行且效果良好的分析;计算简单,易于理解,可解释性强;比较适合处理有缺失属性的样本。缺点:忽略了数据之间的相关性;容易发生过拟合(随机森林可以很大程度上减少过拟合);在决策树当中,对于各类别样本数量不一致的数据,信息增益的结果偏向于那些具有更多数值的特征。
神经网络:优点:分类的准确度高;并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系;具备联想记忆的功能。缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

热点内容
无线网卡怎么改密码 发布:2025-01-18 06:54:41 浏览:765
ava动态编译 发布:2025-01-18 06:54:39 浏览:764
中国学位论文全文数据库 发布:2025-01-18 06:43:49 浏览:688
全局变量存储类别 发布:2025-01-18 06:39:29 浏览:423
苹果平板的王者号如何转移到安卓 发布:2025-01-18 06:37:11 浏览:611
图片访问量 发布:2025-01-18 06:36:34 浏览:497
数据结构与算法下载 发布:2025-01-18 06:36:32 浏览:314
如何租ip服务器 发布:2025-01-18 06:29:07 浏览:117
sql周的第一天 发布:2025-01-18 06:29:05 浏览:887
安卓软件如何看本地视频 发布:2025-01-18 06:28:24 浏览:927