当前位置:首页 » 操作系统 » linux互斥信号量

linux互斥信号量

发布时间: 2022-05-01 19:45:08

linux 内核 互斥量为什么比信号量效率高

linux的常用信号量 BUS与SEGV二者都是错误信号,BUS表示总线错误,SEGV表示段错误,程序崩溃的时候99%都是这两个错误导致的。进程可以捕获和封锁这两类错误。内核对二者的默认处理是memory mp WINCH窗口改变信号(WINdown CHanged)

② linux mutex互斥体和semaphore信号量的区别

  1. mutex保护的资源在同一时刻只允许一个task进行访问;semaphore根据初始值n可以允许至多n个task访问。

  2. semaphore可以实现“等待”机制,一种常见的场景是task0进入阻塞状态“等待”某个事件发生,task1触发事件后“唤醒”task0。task0在“等待”时处于阻塞状态而不是运行状态,因此不会浪费CPU时间。而一个task在拿到mutex之后释放之前不宜进行太长时间的操作,更不能阻塞。

③ 如何实现linux下多线程之间的互斥与同步

Linux设备驱动中必须解决的一个问题是多个进程对共享资源的并发访问,并发访问会导致竞态,linux提供了多种解决竞态问题的方式,这些方式适合不同的应用场景。

Linux内核是多进程、多线程的操作系统,它提供了相当完整的内核同步方法。内核同步方法列表如下:
中断屏蔽
原子操作
自旋锁
读写自旋锁
顺序锁
信号量
读写信号量
BKL(大内核锁)
Seq锁
一、并发与竞态:
定义:
并发(concurrency)指的是多个执行单元同时、并行被执行,而并发的执行单元对共享资源(硬件资源和软件上的全局变量、静态变量等)的访问则很容易导致竞态(race conditions)。
在linux中,主要的竞态发生在如下几种情况:
1、对称多处理器(SMP)多个CPU
特点是多个CPU使用共同的系统总线,因此可访问共同的外设和存储器。
2、单CPU内进程与抢占它的进程
3、中断(硬中断、软中断、Tasklet、底半部)与进程之间
只要并发的多个执行单元存在对共享资源的访问,竞态就有可能发生。
如果中断处理程序访问进程正在访问的资源,则竞态也会会发生。
多个中断之间本身也可能引起并发而导致竞态(中断被更高优先级的中断打断)。

解决竞态问题的途径是保证对共享资源的互斥访问,所谓互斥访问就是指一个执行单元在访问共享资源的时候,其他的执行单元都被禁止访问。

访问共享资源的代码区域被称为临界区,临界区需要以某种互斥机制加以保护,中断屏蔽,原子操作,自旋锁,和信号量都是linux设备驱动中可采用的互斥途径。

临界区和竞争条件:
所谓临界区(critical regions)就是访问和操作共享数据的代码段,为了避免在临界区中并发访问,编程者必须保证这些代码原子地执行——也就是说,代码在执行结束前不可被打断,就如同整个临界区是一个不可分割的指令一样,如果两个执行线程有可能处于同一个临界区中,那么就是程序包含一个bug,如果这种情况发生了,我们就称之为竞争条件(race conditions),避免并发和防止竞争条件被称为同步。

死锁:
死锁的产生需要一定条件:要有一个或多个执行线程和一个或多个资源,每个线程都在等待其中的一个资源,但所有的资源都已经被占用了,所有线程都在相互等待,但它们永远不会释放已经占有的资源,于是任何线程都无法继续,这便意味着死锁的发生。

二、中断屏蔽
在单CPU范围内避免竞态的一种简单方法是在进入临界区之前屏蔽系统的中断。
由于linux内核的进程调度等操作都依赖中断来实现,内核抢占进程之间的并发也就得以避免了。
中断屏蔽的使用方法:
local_irq_disable()//屏蔽中断
//临界区
local_irq_enable()//开中断
特点:
由于linux系统的异步IO,进程调度等很多重要操作都依赖于中断,在屏蔽中断期间所有的中断都无法得到处理,因此长时间的屏蔽是很危险的,有可能造成数据丢失甚至系统崩溃,这就要求在屏蔽中断之后,当前的内核执行路径应当尽快地执行完临界区的代码。
中断屏蔽只能禁止本CPU内的中断,因此,并不能解决多CPU引发的竞态,所以单独使用中断屏蔽并不是一个值得推荐的避免竞态的方法,它一般和自旋锁配合使用。

三、原子操作
定义:原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
(原子原本指的是不可分割的微粒,所以原子操作也就是不能够被分割的指令)
(它保证指令以“原子”的方式执行而不能被打断)
原子操作是不可分割的,在执行完毕不会被任何其它任务或事件中断。在单处理器系统(UniProcessor)中,能够在单条指令中完成的操作都可以认为是" 原子操作",因为中断只能发生于指令之间。这也是某些CPU指令系统中引入了test_and_set、test_and_clear等指令用于临界资源互斥的原因。但是,在对称多处理器(Symmetric Multi-Processor)结构中就不同了,由于系统中有多个处理器在独立地运行,即使能在单条指令中完成的操作也有可能受到干扰。我们以decl (递减指令)为例,这是一个典型的"读-改-写"过程,涉及两次内存访问。
通俗理解:
原子操作,顾名思义,就是说像原子一样不可再细分。一个操作是原子操作,意思就是说这个操作是以原子的方式被执行,要一口气执行完,执行过程不能够被OS的其他行为打断,是一个整体的过程,在其执行过程中,OS的其它行为是插不进来的。
分类:linux内核提供了一系列函数来实现内核中的原子操作,分为整型原子操作和位原子操作,共同点是:在任何情况下操作都是原子的,内核代码可以安全的调用它们而不被打断。

原子整数操作:
针对整数的原子操作只能对atomic_t类型的数据进行处理,在这里之所以引入了一个特殊的数据类型,而没有直接使用C语言的int型,主要是出于两个原因:
第一、让原子函数只接受atomic_t类型的操作数,可以确保原子操作只与这种特殊类型数据一起使用,同时,这也确保了该类型的数据不会被传递给其它任何非原子函数;
第二、使用atomic_t类型确保编译器不对相应的值进行访问优化——这点使得原子操作最终接收到正确的内存地址,而不是一个别名,最后就是在不同体系结构上实现原子操作的时候,使用atomic_t可以屏蔽其间的差异。
原子整数操作最常见的用途就是实现计数器。
另一点需要说明原子操作只能保证操作是原子的,要么完成,要么不完成,不会有操作一半的可能,但原子操作并不能保证操作的顺序性,即它不能保证两个操作是按某个顺序完成的。如果要保证原子操作的顺序性,请使用内存屏障指令。
atomic_t和ATOMIC_INIT(i)定义
typedef struct { volatile int counter; } atomic_t;
#define ATOMIC_INIT(i) { (i) }

在你编写代码的时候,能使用原子操作的时候,就尽量不要使用复杂的加锁机制,对多数体系结构来讲,原子操作与更复杂的同步方法相比较,给系统带来的开销小,对高速缓存行的影响也小,但是,对于那些有高性能要求的代码,对多种同步方法进行测试比较,不失为一种明智的作法。

原子位操作:
针对位这一级数据进行操作的函数,是对普通的内存地址进行操作的。它的参数是一个指针和一个位号。

为方便其间,内核还提供了一组与上述操作对应的非原子位函数,非原子位函数与原子位函数的操作完全相同,但是,前者不保证原子性,且其名字前缀多两个下划线。例如,与test_bit()对应的非原子形式是_test_bit(),如果你不需要原子性操作(比如,如果你已经用锁保护了自己的数据),那么这些非原子的位函数相比原子的位函数可能会执行得更快些。

四、自旋锁
自旋锁的引入:
如 果每个临界区都能像增加变量这样简单就好了,可惜现实不是这样,而是临界区可以跨越多个函数,例如:先得从一个数据结果中移出数据,对其进行格式转换和解 析,最后再把它加入到另一个数据结构中,整个执行过程必须是原子的,在数据被更新完毕之前,不能有其他代码读取这些数据,显然,简单的原子操作是无能为力 的(在单处理器系统(UniProcessor)中,能够在单条指令中完成的操作都可以认为是" 原子操作",因为中断只能发生于指令之间),这就需要使用更为复杂的同步方法——锁来提供保护。

自旋锁的介绍:
Linux内核中最常见的锁是自旋锁(spin lock),自旋锁最多只能被一个可执行线程持有,如果一个执行线程试图获得一个被争用(已经被持有)的自旋锁,那么该线程就会一直进行忙循环—旋转—等待锁重新可用,要是锁未被争用,请求锁的执行线程便能立刻得到它,继续执行,在任意时间,自旋锁都可以防止多于一个的执行线程同时进入理解区,注意同一个锁可以用在多个位置—例如,对于给定数据的所有访问都可以得到保护和同步。
一个被争用的自旋锁使得请求它的线程在等待锁重新可用时自旋(特别浪费处理器时间),所以自旋锁不应该被长时间持有,事实上,这点正是使用自旋锁的初衷,在短期间内进行轻量级加锁,还可以采取另外的方式来处理对锁的争用:让请求线程睡眠,直到锁重新可用时再唤醒它,这样处理器就不必循环等待,可以去执行其他代码,这也会带来一定的开销——这里有两次明显的上下文切换, 被阻塞的线程要换出和换入。因此,持有自旋锁的时间最好小于完成两次上下文切换的耗时,当然我们大多数人不会无聊到去测量上下文切换的耗时,所以我们让持 有自旋锁的时间应尽可能的短就可以了,信号量可以提供上述第二种机制,它使得在发生争用时,等待的线程能投入睡眠,而不是旋转。
自旋锁可以使用在中断处理程序中(此处不能使用信号量,因为它们会导致睡眠),在中断处理程序中使用自旋锁时,一定要在获取锁之前,首先禁止本地中断(在 当前处理器上的中断请求),否则,中断处理程序就会打断正持有锁的内核代码,有可能会试图去争用这个已经持有的自旋锁,这样以来,中断处理程序就会自旋, 等待该锁重新可用,但是锁的持有者在这个中断处理程序执行完毕前不可能运行,这正是我们在前一章节中提到的双重请求死锁,注意,需要关闭的只是当前处理器上的中断,如果中断发生在不同的处理器上,即使中断处理程序在同一锁上自旋,也不会妨碍锁的持有者(在不同处理器上)最终释放锁。

自旋锁的简单理解:
理解自旋锁最简单的方法是把它作为一个变量看待,该变量把一个临界区或者标记为“我当前正在运行,请稍等一会”或者标记为“我当前不在运行,可以被使用”。如果A执行单元首先进入例程,它将持有自旋锁,当B执行单元试图进入同一个例程时,将获知自旋锁已被持有,需等到A执行单元释放后才能进入。

自旋锁的API函数:

其实介绍的几种信号量和互斥机制,其底层源码都是使用自旋锁,可以理解为自旋锁的再包装。所以从这里就可以理解为什么自旋锁通常可以提供比信号量更高的性能。
自旋锁是一个互斥设备,他只能会两个值:“锁定”和“解锁”。它通常实现为某个整数之中的单个位。
“测试并设置”的操作必须以原子方式完成。
任何时候,只要内核代码拥有自旋锁,在相关CPU上的抢占就会被禁止。
适用于自旋锁的核心规则:
(1)任何拥有自旋锁的代码都必须使原子的,除服务中断外(某些情况下也不能放弃CPU,如中断服务也要获得自旋锁。为了避免这种锁陷阱,需要在拥有自旋锁时禁止中断),不能放弃CPU(如休眠,休眠可发生在许多无法预期的地方)。否则CPU将有可能永远自旋下去(死机)。
(2)拥有自旋锁的时间越短越好。

需 要强调的是,自旋锁别设计用于多处理器的同步机制,对于单处理器(对于单处理器并且不可抢占的内核来说,自旋锁什么也不作),内核在编译时不会引入自旋锁 机制,对于可抢占的内核,它仅仅被用于设置内核的抢占机制是否开启的一个开关,也就是说加锁和解锁实际变成了禁止或开启内核抢占功能。如果内核不支持抢 占,那么自旋锁根本就不会编译到内核中。
内核中使用spinlock_t类型来表示自旋锁,它定义在:
typedef struct {
raw_spinlock_t raw_lock;
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
unsigned int break_lock;
#endif
} spinlock_t;

对于不支持SMP的内核来说,struct raw_spinlock_t什么也没有,是一个空结构。对于支持多处理器的内核来说,struct raw_spinlock_t定义为
typedef struct {
unsigned int slock;
} raw_spinlock_t;

slock表示了自旋锁的状态,“1”表示自旋锁处于解锁状态(UNLOCK),“0”表示自旋锁处于上锁状态(LOCKED)。
break_lock表示当前是否由进程在等待自旋锁,显然,它只有在支持抢占的SMP内核上才起作用。
自旋锁的实现是一个复杂的过程,说它复杂不是因为需要多少代码或逻辑来实现它,其实它的实现代码很少。自旋锁的实现跟体系结构关系密切,核心代码基本也是由汇编语言写成,与体协结构相关的核心代码都放在相关的目录下,比如。对于我们驱动程序开发人员来说,我们没有必要了解这么spinlock的内部细节,如果你对它感兴趣,请参考阅读Linux内核源代码。对于我们驱动的spinlock接口,我们只需包括头文件。在我们详细的介绍spinlock的API之前,我们先来看看自旋锁的一个基本使用格式:
#include
spinlock_t lock = SPIN_LOCK_UNLOCKED;

spin_lock(&lock);
....
spin_unlock(&lock);

从使用上来说,spinlock的API还很简单的,一般我们会用的的API如下表,其实它们都是定义在中的宏接口,真正的实现在中
#include
SPIN_LOCK_UNLOCKED
DEFINE_SPINLOCK
spin_lock_init( spinlock_t *)
spin_lock(spinlock_t *)
spin_unlock(spinlock_t *)
spin_lock_irq(spinlock_t *)
spin_unlock_irq(spinlock_t *)
spin_lock_irqsace(spinlock_t *,unsigned long flags)
spin_unlock_irqsace(spinlock_t *, unsigned long flags)
spin_trylock(spinlock_t *)
spin_is_locked(spinlock_t *)

• 初始化
spinlock有两种初始化形式,一种是静态初始化,一种是动态初始化。对于静态的spinlock对象,我们用 SPIN_LOCK_UNLOCKED来初始化,它是一个宏。当然,我们也可以把声明spinlock和初始化它放在一起做,这就是 DEFINE_SPINLOCK宏的工作,因此,下面的两行代码是等价的。
DEFINE_SPINLOCK (lock);
spinlock_t lock = SPIN_LOCK_UNLOCKED;

spin_lock_init 函数一般用来初始化动态创建的spinlock_t对象,它的参数是一个指向spinlock_t对象的指针。当然,它也可以初始化一个静态的没有初始化的spinlock_t对象。
spinlock_t *lock
......
spin_lock_init(lock);

• 获取锁
内核提供了三个函数用于获取一个自旋锁。
spin_lock:获取指定的自旋锁。
spin_lock_irq:禁止本地中断并获取自旋锁。
spin_lock_irqsace:保存本地中断状态,禁止本地中断并获取自旋锁,返回本地中断状态。

自旋锁是可以使用在中断处理程序中的,这时需要使用具有关闭本地中断功能的函数,我们推荐使用 spin_lock_irqsave,因为它会保存加锁前的中断标志,这样就会正确恢复解锁时的中断标志。如果spin_lock_irq在加锁时中断是关闭的,那么在解锁时就会错误的开启中断。

另外两个同自旋锁获取相关的函数是:
spin_trylock():尝试获取自旋锁,如果获取失败则立即返回非0值,否则返回0。
spin_is_locked():判断指定的自旋锁是否已经被获取了。如果是则返回非0,否则,返回0。
• 释放锁
同获取锁相对应,内核提供了三个相对的函数来释放自旋锁。
spin_unlock:释放指定的自旋锁。
spin_unlock_irq:释放自旋锁并激活本地中断。
spin_unlock_irqsave:释放自旋锁,并恢复保存的本地中断状态。

五、读写自旋锁
如 果临界区保护的数据是可读可写的,那么只要没有写操作,对于读是可以支持并发操作的。对于这种只要求写操作是互斥的需求,如果还是使用自旋锁显然是无法满 足这个要求(对于读操作实在是太浪费了)。为此内核提供了另一种锁-读写自旋锁,读自旋锁也叫共享自旋锁,写自旋锁也叫排他自旋锁。
读写自旋锁是一种比自旋锁粒度更小的锁机制,它保留了“自旋”的概念,但是在写操作方面,只能最多有一个写进程,在读操作方面,同时可以有多个读执行单元,当然,读和写也不能同时进行。
读写自旋锁的使用也普通自旋锁的使用很类似,首先要初始化读写自旋锁对象:
// 静态初始化
rwlock_t rwlock = RW_LOCK_UNLOCKED;
//动态初始化
rwlock_t *rwlock;
...
rw_lock_init(rwlock);

在读操作代码里对共享数据获取读自旋锁:
read_lock(&rwlock);
...
read_unlock(&rwlock);

在写操作代码里为共享数据获取写自旋锁:
write_lock(&rwlock);
...
write_unlock(&rwlock);

需要注意的是,如果有大量的写操作,会使写操作自旋在写自旋锁上而处于写饥饿状态(等待读自旋锁的全部释放),因为读自旋锁会自由的获取读自旋锁。

读写自旋锁的函数类似于普通自旋锁,这里就不一一介绍了,我们把它列在下面的表中。
RW_LOCK_UNLOCKED
rw_lock_init(rwlock_t *)
read_lock(rwlock_t *)
read_unlock(rwlock_t *)
read_lock_irq(rwlock_t *)
read_unlock_irq(rwlock_t *)
read_lock_irqsave(rwlock_t *, unsigned long)
read_unlock_irqsave(rwlock_t *, unsigned long)
write_lock(rwlock_t *)
write_unlock(rwlock_t *)
write_lock_irq(rwlock_t *)
write_unlock_irq(rwlock_t *)
write_lock_irqsave(rwlock_t *, unsigned long)
write_unlock_irqsave(rwlock_t *, unsigned long)
rw_is_locked(rwlock_t *)
六、顺序琐
顺序琐(seqlock)是对读写锁的一种优化,若使用顺序琐,读执行单元绝不会被写执行单元阻塞,也就是说,读执行单元可以在写执行单元对被顺序琐保护的共享资源进行写操作时仍然可以继续读,而不必等待写执行单元完成写操作,写执行单元也不需要等待所有读执行单元完成读操作才去进行写操作。
但是,写执行单元与写执行单元之间仍然是互斥的,即如果有写执行单元在进行写操作,其它写执行单元必须自旋在哪里,直到写执行单元释放了顺序琐。
如果读执行单元在读操作期间,写执行单元已经发生了写操作,那么,读执行单元必须重新读取数据,以便确保得到的数据是完整的,这种锁在读写同时进行的概率比较小时,性能是非常好的,而且它允许读写同时进行,因而更大的提高了并发性,
注意,顺序琐由一个限制,就是它必须被保护的共享资源不含有指针,因为写执行单元可能使得指针失效,但读执行单元如果正要访问该指针,将导致Oops。
七、信号量
Linux中的信号量是一种睡眠锁,如果有一个任务试图获得一个已经被占用的信号量时,信号量会将其推进一个等待队列,然后让其睡眠,这时处理器能重获自由,从而去执行其它代码,当持有信号量的进程将信号量释放后,处于等待队列中的哪个任务被唤醒,并获得该信号量。
信号量,或旗标,就是我们在操作系统里学习的经典的P/V原语操作。
P:如果信号量值大于0,则递减信号量的值,程序继续执行,否则,睡眠等待信号量大于0。
V:递增信号量的值,如果递增的信号量的值大于0,则唤醒等待的进程。

信号量的值确定了同时可以有多少个进程可以同时进入临界区,如果信号量的初始值始1,这信号量就是互斥信号量(MUTEX)。对于大于1的非0值信号量,也可称为计数信号量(counting semaphore)。对于一般的驱动程序使用的信号量都是互斥信号量。
类似于自旋锁,信号量的实现也与体系结构密切相关,具体的实现定义在头文件中,对于x86_32系统来说,它的定义如下:
struct semaphore {
atomic_t count;
int sleepers;
wait_queue_head_t wait;
};

信号量的初始值count是atomic_t类型的,这是一个原子操作类型,它也是一个内核同步技术,可见信号量是基于原子操作的。我们会在后面原子操作部分对原子操作做详细介绍。

信号量的使用类似于自旋锁,包括创建、获取和释放。我们还是来先展示信号量的基本使用形式:
static DECLARE_MUTEX(my_sem);
......
if (down_interruptible(&my_sem))

{
return -ERESTARTSYS;
}
......
up(&my_sem)

Linux内核中的信号量函数接口如下:
static DECLARE_SEMAPHORE_GENERIC(name, count);
static DECLARE_MUTEX(name);
seam_init(struct semaphore *, int);
init_MUTEX(struct semaphore *);
init_MUTEX_LOCKED(struct semaphore *)
down_interruptible(struct semaphore *);
down(struct semaphore *)
down_trylock(struct semaphore *)
up(struct semaphore *)
• 初始化信号量
信号量的初始化包括静态初始化和动态初始化。静态初始化用于静态的声明并初始化信号量。
static DECLARE_SEMAPHORE_GENERIC(name, count);
static DECLARE_MUTEX(name);

对于动态声明或创建的信号量,可以使用如下函数进行初始化:
seam_init(sem, count);
init_MUTEX(sem);
init_MUTEX_LOCKED(struct semaphore *)

显然,带有MUTEX的函数始初始化互斥信号量。LOCKED则初始化信号量为锁状态。
• 使用信号量
信号量初始化完成后我们就可以使用它了
down_interruptible(struct semaphore *);
down(struct semaphore *)
down_trylock(struct semaphore *)
up(struct semaphore *)

down函数会尝试获取指定的信号量,如果信号量已经被使用了,则进程进入不可中断的睡眠状态。down_interruptible则会使进程进入可中断的睡眠状态。关于进程状态的详细细节,我们在内核的进程管理里在做详细介绍。

down_trylock尝试获取信号量, 如果获取成功则返回0,失败则会立即返回非0。

当退出临界区时使用up函数释放信号量,如果信号量上的睡眠队列不为空,则唤醒其中一个等待进程。

八、读写信号量
类似于自旋锁,信号量也有读写信号量。读写信号量API定义在头文件中,它的定义其实也是体系结构相关的,因此具体实现定义在头文件中,以下是x86的例子:
struct rw_semaphore {
signed long count;
spinlock_t wait_lock;
struct list_head wait_list;
};

④ linux 中P V操作是

p V操作是关于互斥信号量的操作
是关于进程同步问题所用到的。
应该选D

不过这题有点弱,A也说得过去,无所谓高级低级

解释一下
信号量其实是一个变量,由信号量保护共享资源。
信号量在创建的时候要设一个初始值
表示同时有几个任务可以访问信号量所保护的资源。
初始值为1就变成了互斥(MUTEX)
即 同时只有一个任务可以访问。
简单说 P操作就是如果信号量大于1,再把信号量减1。
v操作就是把信号量自增1。

运用:
需要访问信号量所保护的共享资源时
调用P,
结束访问时
调用V。
这样,就实现了对共享资源的保护。
呵呵,复习了一下。

⑤ 如何使用Linux提供的信号量来实现进程的互斥和同步

#include<stdio.h>
#include<pthread.h>
#include<unistd.h>
#include<fcntl.h>
#include<sys/stat.h>
#include<sys/types.h>
#include<semaphore.h>
#include<stdlib.h>
#define N 3
pthread_mutex_t mutex_w,mutex_r; // 定义读写互斥锁
sem_t sem_w,sem_r; //定义读写信号量

int data[N];
int pos=0;
void *function_w(void *arg)
{
int w = *(int *)arg;
pos = w;
while(1)
{
usleep(100000);
sem_wait(&sem_w);//等待可写的资源
pthread_mutex_lock(&mutex_w);//禁止别的线程写此资源
data[pos] = w;
w++;
w++;
w++;
pos++;
pos=pos%N;
pthread_mutex_unlock(&mutex_w);//别的线程可写此资源
sem_post(&sem_r);// 释放一个读资源
}
return (void *)0;
}
void *function_r(void *arg)
{
while(1)
{
sem_wait(&sem_r);//等待可读的资源
pthread_mutex_lock(&mutex_r);//禁止别的线程读此资源
printf("%d\n",data[(pos+N-1)%N]);
pthread_mutex_unlock(&mutex_r);//别的线程可读此资源
sem_post(&sem_w);// 释放一个写资源
}
return (void *)0;
}
int main(int argc, char **argv)
{
pthread_t thread[2*N];

int i;

pthread_mutex_init(&mutex_w,NULL);
pthread_mutex_init(&mutex_r,NULL);
sem_init(&sem_w,0,N);
sem_init(&sem_r,0,0);

for(i=0;i<N;i++)
{
if ( pthread_create(&thread[i],NULL,function_w,(void *)&i) < 0)//创建写线程
{
perror("pthread_create");
exit(-1);
}
}

for(i=N;i<2*N;i++)
{
if ( pthread_create(&thread[i],NULL,function_r,NULL) < 0)//创建读线程
{
perror("pthread_create");
exit(-1);
}
}

sleep(1);

return(0);
}

⑥ linux下信号量和互斥锁的区别

信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在semtake的时候,就阻塞在哪里)。

而互斥锁是用在多线程多任务互斥的,一个线程占用了某一个资源,那么别的线程就无法访问,直到这个线程unlock,其他的线程才开始可以利用这个资源。比如对全局变量的访问,有时要加锁,操作完了,在解锁。

有的时候锁和信号量会同时使用的。我记得以前做的一个项目就是既有semtake,又有lock。

⑦ linux问题:信号量的互斥模式(也就是信号变量只为0和1)与互斥量是一回事吗

不是一回事,但在一定程度上实现相同的功能

⑧ linux 信号量是什么怎么用

Linux信号量(semaphore)是一种互斥机制。即对某个互斥资源的访问会收到信号量的保护,在访问之前需要获得信号量。
在操作完共享资源后,需释放信号量,以便另外的进程来获得资源。获得和释放应该成对出现。
获得信号量集,需要注意的是,获得的是一个集合,而不是一个单一的信号量。
#include
#include
#include
1: int semget(key_t key,int nsems,int semflg);
key:系统根据这个值来获取信号量集。
nsems:此信号集包括几个信号量。
semflg:创建此信号量的属性。 (IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)
成功则返回该信号量集的ID。
注:
既指定IPC_CREAT又指定IPC_EXCL时,如果系统中该信号量集已经存在,则马上返回。
如果需要获得存在的信号量,则将此参数置0.
2: int semctl(int semid,int senum,int cmd....)
semid:信号量ID。
senum:对信号量集中的第几个信号量进行控制。(从0开始)
cmd:需要进行的操作。(SETVAL是其中的一个)。
根据cmd的不同可能存在第四个参数,cmd=SETVAL时,表示同时信号量可以被获得几次,如第四个参数
num=1表示只能被获得一次,既被信号量保护的资源只能同时被一个程序使用。
该系统调用,是在对信号量初始化时用的。
-3: “3”前面加了"-"表示当需要使用互斥资源时应该做这步。
int semop(int semid,struct sembuf *sem,int num_elements);
struct sembuf {
unsigned short sem_num; //该信号量集中的第几个信号量。
int sem_op;//需要获得还是释放信号量
int sem_flg;//相关动作
};
num_elements:需要对该信号量集中的多少个信号量进行处理。
获得信号量时,将sembuf结构提初始化为:
sem_num = 0; //该信号量集中的首个信号量
sem_op = -1; //获得信号量
sem_flag = IPC_NOWAIT; //如果不能获得信号量,马上返回。
semop(semid,_sem,1);
同理释放信号量时,将sem_op设为1.
以上是对信号量的简单处理

⑨ linux pthread 信号量 占用资源吗

glibc提供的pthread互斥信号量可以用在进程内部,也可以用在进程间,可以在初始化时通过pthread_mutexattr_setpshared接口设置该信号量属性,表示是进程内还是进程间。进程内的使用较为简单,本文的总结主要是针对进程间的,进程内的也可以参考,其代码实现原理是类似的。
一、实现原理
pthread mutex的实现是非常轻量级的,采用原子操作+futex系统调用。
在没有竞争的情况下,即锁空闲时,任务获取信号量只需要通过原子操作锁的状态值,把值置为占有,再记录其他一些俄信息(owner,计数,如果使能回收功能则串入任务的信号量回收链表等),然后就返回了。
如果在获取锁时发现被占用了,如果调用者需要睡眠等待,这时候会触发futex系统调用,由内核继续处理,内核会让调用任务睡眠,并在适当时候唤醒(超时或者锁状态为可用)。
占用锁的任务释放锁时,如果没有任务等待这把锁,只需要把锁状态置为空闲即可。如果发现有其他任务在等待此锁,则触发futex系统调用,由内核唤醒等待任务。
由此可见,在没有竞争的情况下,mutex只需要在用户态操作锁状态值,无须陷入内核,是非常高效的。
获取到锁的任务没有陷入内核,那么当锁支持优先级翻转时,高优先级任务等待这把锁,正常处理必须提升占用锁的任务优先级。内核又是怎么知道是哪个任务占用了锁呢?实现上,复用了锁的状态值,该值在空闲态时为0,非空闲态则保存了锁的持有者ID,即PID,内核态通过PID就知道是那个任务了。
二、内核对锁的管理
内核维护了一个hash链表,每把锁都被插入到hash链表中去,hash值的计算如下(参考get_futex_key):1,如果是进程内的锁,则通
过锁的虚拟地址+任务mm指针值+锁在页内偏移;2,如果是进程间的锁,则会获取锁虚拟地址对应物理地址的page描述符,由page描述符构造
hash值。
这样计算的原因是进程间的锁在各个进程内虚拟地址可能是不同的,但都映射到同一个物理地址,对应同一个page描述符。所以,内
核使用它来定位是否同一个锁。
这里对进程间互斥锁计算hash值的方法,给进程间共享锁的使用设置了一个隐患条件。下面描述这个问题。

三、进程间互斥信号量的使用限制:必须在系统管理的内存上定义mutex结构,而不能在用户reserved的共享内存上定义mutex结构。
锁要实现进程间互斥,必须各个进程都能看到这个锁,因此,锁结构必须放在共享内存上。
获取系统的共享内存通过System V的API接口创建:shmget, shmat,shmdt。但是shmget的参数需要一个id值,各进程映射同一块共享内存需要同样的ID值。如果各个进程需要共享的共享内存比较多,如几千上万个,ID值如果管理?shmget的man帮助和一些示例代码给出的是通过ftok函数把一个文件转为ID值(实际就是把文件对应的INODE转为ID值),但实际应用中,如果需要的共享内存个数较多,难道创建成千上万个文件来使用?而且怎么保证文件在进程的生命周期内不会被删除或者重建?
当时开发的系统还存在另外一种共享内存,就是我们通过remap_pfn_range实现的,自己管理了这块内存的申请释放。申请接口参数为字符串,相同的字符串表示同一块内存。因此,倾向于使用自己管理的共享内存存放mutex结构。但在使用中,发现这种方法达不到互斥的效果。为什么?
原因是自己管理的共享内存在内核是通过remap_pfn_range实现的,内核会把这块内存置为reserved,表示非内核管理,获取锁的HASH值时,查找不到page结构,返回失败了。最后的解决方法还是通过shmget申请共享内存,但不是通过ftok获取ID,而是通过字符串转为ID值并处理冲突。

四、进程间互斥信号量回收问题。
假设进程P1获取了进程间信号量,异常退出了,还没有释放信号量,这时候其他进程想来获取信号量,能获取的到吗?
或者进程P1获取了信号量后,其他进程获取不到进入了睡眠后,P1异常退出了,谁来负责唤醒睡眠的进程?
好在系统设计上已经考虑了这一点。
只要在信号量初始化时调用pthread_mutexattr_setrobust_np设置支持信号量回收机制,然后,在获取信号量时,如果原来占有信号量的进程退出了,系统将会返回EOWNERDEAD,判断是这个返回值后,调用pthread_mutex_consistent_np完成信号量owner的切换工作即可。
其原理如下:
任务创建时,会注册一个robust list(用户态链表)到内核的任务控制块TCB中期,获取了信号量时,会把信号量挂入链表。进程复位时,内核会遍历此链表(内核必须非常小心,因为此时的链表信息可能不可靠了,可不能影响到内核),置上ownerdead的标志到锁状态,并唤醒等待在此信号量链表上的进程。
五、pthread接口使用说明
pthread_mutex_init: 根据指定的属性初始化一个mutex,状态为空闲。
pthread_mutex_destroy: 删除一个mutex
pthread_mutex_lock/trylock/timedlock/unlock: 获取锁、释放锁。没有竞争关系的情况下在用户态只需要置下锁的状态值即返回了,无须陷入内核。但是timedlock的入参为超时时间,一般需要调用系统API获取,会导致陷入内核,性能较差,实现上,可先trylock,失败了再timedlock。
pthread_mutexattr_init:配置初始化
pthread_mutexattr_destroy:删除配置初始化接口申请的资源
pthread_mutexattr_setpshared:设置mutex是否进程间共享
pthread_mutexattr_settype:设置类型,如递归调用,错误检测等。
pthread_mutexattr_setprotocol:设置是否支持优先级翻转
pthread_mutexattr_setprioceiling:设置获取信号量的任务运行在最高优先级。
每个set接口都有对应的get接口。

六、pthread结构变量说明

struct __pthread_mutex_s
{
int __lock; ----31bit:这个锁是否有等待者;30bit:这个锁的owner是否已经挂掉了。其他bit位:0锁状态空闲,非0为持有锁的任务PID;
unsigned int __count; ----获取锁的次数,支持嵌套调用,每次获取到锁值加1,释放减1。
int __owner; ----锁的owner
unsigned int __nusers; ----使用锁的任务个数,通常为1(被占用)或0(空闲)
int __kind;----锁的属性,如递归调用,优先级翻转等。
int __spins; ----SMP下,尝试获取锁的次数,尽量不进入内核。
__pthread_list_t __list; ----把锁插入回收链表,如果支持回收功能,每次获取锁时要插入任务控制块的回收链表。
}__data;

⑩ linux多线程信号量怎么实现互斥啊

信号量与互斥锁之间的区别:1. 互斥量用于线程的互斥,信号量用于线程的同步。 这是互斥量和信号量的根本区别,也就是互斥和同步之间的区别。 互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。 同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源 2. 互斥量值只能为0/1,信号量值可以为非负整数。 也就是说,一个互斥量只能用于一个资源的互斥访问,它不能实现多个资源的多线程互斥问题。信号量可以实现多个同类资源的多线程互斥和同步。当信号量为单值信号量是,也可以完成一个资源的互斥访问。 3. 互斥量的加锁和解锁必须由同一线程分别对应使用,信号量可以由一个线程释放,另一个线程得到。

热点内容
微指令的编译方法有哪一些 发布:2024-10-05 19:02:10 浏览:884
android离线定位 发布:2024-10-05 18:36:40 浏览:858
ipad4密码忘记怎么办 发布:2024-10-05 18:36:07 浏览:237
黑莓加密天线 发布:2024-10-05 18:30:07 浏览:849
编程入行年龄 发布:2024-10-05 18:29:24 浏览:538
服务器地址访问不到 发布:2024-10-05 18:20:55 浏览:689
手机解锁忘记密码多少钱 发布:2024-10-05 18:14:25 浏览:785
linux乱码问题 发布:2024-10-05 18:00:25 浏览:543
访客仪需要电脑做服务器吗 发布:2024-10-05 17:57:57 浏览:10
怎么在u盘设置密码 发布:2024-10-05 17:55:23 浏览:580