词向量算法
Ⅰ 文本自动分类算法有哪些呢
文本自动分类算法主要有朴素贝叶斯分类算法、支持向量机分类算法、KNN算法和决策树算法。
朴素贝叶斯分类算法主要是利用文本中词的特征项和类别的组合概率来估算文本属于哪个类别的概率。
支持向量机分类算分主要是采用特征提取技术把文本信息转换为词向量,然后用词向量与训练好的类别数据进行相似度计算。
KNN算法是在训练集中找到离它最近的k个文本,并根据这些文本的分类来预测待分类文本属于哪一个类别。
决策树算法是首先建立一个基于树的预测模型,根据预测模型来对文本进行预测分类。
Ⅱ 词向量 rnn 矩阵是什么样的
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2] 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
Ⅲ 在神经网络中应用词向量也是一种迁移学习吗
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的
Ⅳ word2vec 词向量怎么来的
2013年,Google开源了一款用于词向量计算的工具——word2vec,引起了工业界和学术界的关注。首先,word2vec可以在百万数量级的词典和上亿的数据集上进行高效地训练;其次,该工具得到的训练结果——词向量(word embedding),可以很好地度量词与词之间的相似性。随着深度学习(Deep Learning)在自然语言处理中应用的普及,很多人误以为word2vec是一种深度学习算法。其实word2vec算法的背后是一个浅层神经网络。另外需要强调的一点是,word2vec是一个计算word vector的开源工具。当我们在说word2vec算法或模型的时候,其实指的是其背后用于计算word vector的CBoW模型和Skip-gram模型。很多人以为word2vec指的是一个算法或模型,这也是一种谬误。接下来,本文将从统计语言模型出发,尽可能详细地介绍word2vec工具背后的算法模型的来龙去脉。
详情:网页链接
Ⅳ 训练词向量有哪些算法
刚用 gensim 完成训练。中文的wiki语料,整理->简繁转换->分词 (这过程比较耗时)。整理完,大概1g语料,训练的话,CBOW算法训练了半个小时不到。训练后的模型大概是2g左右,加载起来也是比较慢,不过还能接受。
Ⅵ word2vec和word embedding有什么区别
个人理解是,word embedding 是一个将词向量化的概念,来源于Bengio的论文《Neural probabilistic language models》,中文译名有"词嵌入"。
word2vec是谷歌提出一种word embedding 的工具或者算法集合,采用了两种模型(CBOW与skip-gram模型)与两种方法(负采样与层次softmax方法)的组合,比较常见的组合为 skip-gram+负采样方法。
可以查看以下两个来源,
word embedding :Word embedding - Wikipedia
word2vec中的数学原理详解:word2vec 中的数学原理详解(一)目录和前言
对于起源与其他的word embedding方法可以查看 Deep Learning in NLP (一)词向量和语言模型
Ⅶ embedding projector怎么用
降维的方法
Embedding Projector 提供了三种常用的数据降维(data dimensionality rection)方法,这让我们可以更轻松地实现复杂数据的可视化,这三种方法分别是 PCA、t-SNE 和自定义线性投影(custom linear projections):
PCA 通常可以有效地探索嵌入的内在结构,揭示出数据中最具影响力的维度。
t-SNE 可用于探索局部近邻值(local neighborhoods)和寻找聚类(cluster),可以让开发者确保一个嵌入保留了数据中的所有含义(比如在 MNIST 数据集中,可以看到同样的数字聚类在一起)。
自定义线性投影可以帮助发现数据集中有意义的“方向(direction)”,比如一个语言生成模型中一种正式的语调和随意的语调之间的区别——这让我们可以设计出更具适应性的机器学习系统。
Embedding Projector 这个工具使用起来很简单,它可以实现数据的 2D 或 3D 效果展示。轻点鼠标,便可实现数据的旋转、缩放。我们按照 word2vec 教程在 TensorFlow 上训练了一些词向量,将这些词向量通过我们的工具进行可视化展示,点击图中任意一点(表示词向量的点),那么通过这种算法算出的,与这个词语义相关的词以及其向量空间距离就会罗列出来。它给我们提供了一种非常重要的探究算法性能的方法
Ⅷ word2vec词向量加权的方法有哪些
我对词向量加权这个还真的不太了解,也没怎么接触过,不过你可以考虑一下fastText,可能会让你满意。
Ⅸ word2vec是如何得到词向量的
word2vec是一个将单词转换成向量形式的工具。可以把对文本内容的处理简化为向量空间中的向量运算,计算出向量空间上的相似度,来表示文本语义上的相似度。
一、理论概述:
1.词向量是什么?自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词。
举个栗子:
“话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...]
“麦克”表示为 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ...]
每个词都是茫茫 0 海中的一个 1。这种 One-hot Representation 如果采用稀疏方式存储,会是非常的简洁:也就是给每个词分配一个数字 ID。比如刚才的例子中,话筒记为 3,麦克记为 8(假设从 0 开始记)。如果要编程实现的话,用 Hash 表给每个词分配一个编号就可以了。这么简洁的表示方法配合上最大熵、SVM、CRF 等等算法已经很好地完成了 NLP 领域的各种主流任务。当然这种表示方法也存在一个重要的问题就是“词汇鸿沟”现象:任意两个词之间都是孤立的。光从这两个向量中看不出两个词是否有关系,哪怕是话筒和麦克这样的同义词也不能幸免于难。Deep Learning 中一般用到的词向量并不是刚才提到的用One-hot Representation 表示的那种很长很长的词向量,而是用Distributed Representation(不知道这个应该怎么翻译,因为还存在一种叫“Distributional Representation”(类似,LDA中用topic表示词语的词向量的表示方法)表示的一种低维实数向量。这种向量一般是这个样子:[0.792, −0.177, −0.107, 0.109, −0.542, ...]。维度以50维和 100 维比较常见。
2.词向量的来历?Distributed representation 最早是 Hinton 在 1986 年的论文《Learning distributed representations of concepts》中提出的。虽然这篇文章没有说要将词做 Distributed representation但至少这种先进的思想在那个时候就在人们的心中埋下了火种,到 2000 年之后开始逐渐被人重视。
3. 词向量的训练:要介绍词向量是怎么训练得到的,就不得不提到语言模型。到目前为止我了解到的所有训练方法都是在训练语言模型的同时,顺便得到词向量的。这也比较容易理解,要从一段无标注的自然文本中学习出一些东西,无非就是统计出词频、词的共现、词的搭配之类的信息。而要从自然文本中统计并建立一个语言模型,无疑是要求最为精确的一个任务(也不排除以后有人创造出更好更有用的方法)。既然构建语言模型这一任务要求这么高,其中必然也需要对语言进行更精细的统计和分析,同时也会需要更好的模型,更大的数据来支撑。目前最好的词向量都来自于此,也就不难理解了。词向量的训练最经典的有 3 个工作,C&W 2008、M&H 2008、Mikolov 2010。当然在说这些工作之前,不得不介绍一下这一系列中 Bengio 的经典之作
4. 词向量的评价:词向量的评价大体上可以分成两种方式,第一种是把词向量融入现有系统中,看对系统性能的提升;第二种是直接从语言学的角度对词向量进行分析,如相似度、语义偏移等。
Ⅹ 有谁可以解释下word embedding
可以翻译成词向量。
传统的对于每个词,抽象成词向量形式是0,1的形式,比如:【0,0,0,1,0.。。。0】并且向量的长度是整个词集数量大小。
而词向量word embedding是通过某中学习算法学习出来的新的向量形式。该向量的长度是可以认为指定的,并且其中的每个维度值为离散的。比如,【0.5432,0.4567,-0.984,0.623】