当前位置:首页 » 操作系统 » 特征检测算法

特征检测算法

发布时间: 2022-04-30 14:47:48

① 图像识别算法都有哪些

图像识别,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理,图像识别软件国外代表的有康耐视等,国内代表的有图智能等。另外在地理学中指将遥感图像进行分类的技术。

② 人脸图像特征提取原理是什么

人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。说到人脸识别,大部分的人第一反应是“刷脸”,我们来看下人脸识别的定义:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。通过变换增强图像阴影或降低光区域的灰度值范围,从而把人脸图像的整体亮度变换到一个预先定义的标准人脸图像。

③ 对一张图片进行特征提取的具体算法和程序。越具体越好。感谢,例如算出图像的形状长宽高之类的。

对一张图片进行特征提取的具体算法和程序,越具体越好,感谢例如算出图像的形状,长宽之类的,我觉得对图片特征提取的体术法并没有什么具体算法,因为每个相机照出来的图片,它的放大缩小都是不一样的,不可能从一个图片算出一个图像的长宽高,只能够算出一个大概的长宽高,如果要算出非常准确的茶膏,只能用一些红外测距仪,还有某些特定的仪器才能构测量出,一些建筑物的长宽高不能够从一个图片上面去算出一个建筑物的长宽高的是根本没法算出来的。

④ 人脸识别技术的核心算法是什么

人脸识别核心算法包括检测定位、建模、纹理变换、表情变换、模型统计训练、识别匹配等关键步骤,其中最关键的技术包括两部分:人脸检测(Face Detect)和人脸识别(Face Identification)。

检测技术核心称为:迭代动态局部特征分析(SDLFA),它是以国际通用的局域特征分析(LFA)和动态局域特征分析(DLFA)为基础,并且针对现实业务场景进行了全面的算法增强及结果优化,识别技术核心称为:实时面部特征匹配(RFFM),其识别特征数据紧凑,特征算法准确高效,是国际国内独创性的识别技术。

⑤ 特征提取算法有哪些

图像的特征可分为两个层次,包括低层视觉特征,和高级语义特征。低层视觉特征包括纹理、颜色、形状三方面。语义特征是事物与事物之间的关系。纹理特征提取算法有:灰度共生矩阵法,傅里叶功率谱法颜色特征提取算法有:直方图法,累计直方图法,颜色聚类法等等。形状特征提取算法有:空间矩特征等等高级语义提取:语义网络、数理逻辑、框架等方法

⑥ 百度识图的核心技术是什么

网络识图的核心技术原理:

对于这种网络,谷歌的图像搜索一般由算法实现,一般是三个步骤:
1. 将目标图片进行特征提取,描述图像的算法很多,用的比较多的是:SIFT描述子,指纹算法函数,bundling features算法,hash function(散列函数)等。也可以根据不同的图像,设计不同的算法,比如图像局部N阶矩的方法提取图像特征。
2. 将图像特征信息进行编码,并将海量图像编码做查找表。对于目标图像,可以对分辨率较大的图像进行降采样,减少运算量后在进行图像特征提取和编码处理。
3. 相似度匹配运算:利用目标图像的编码值,在图像搜索引擎中的图像数据库进行全局或是局部的相似度计算;根据所需要的鲁棒性,设定阈值,然后将相似度高的图片预保留下来;最后应该还有一步筛选最佳匹配图片,这个应该还是用到特征检测算法。
其中每个步骤都有很多算法研究,围绕数学,统计学,图像编码,信号处理等理论进行研究。

⑦ 人脸识别的识别算法

人脸识别的基本方法

人脸识别的方法很多,以下介绍一些主要的人脸识别方法。

(1)几何特征的人脸识别方法

几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。

(2)基于特征脸(PCA)的人脸识别方法

特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。

(3)神经网络的人脸识别方法

神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。

(4)弹性图匹配的人脸识别方法

弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

(5)线段Hausdorff 距离(LHD) 的人脸识别方法

心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。

(6)支持向量机(SVM) 的人脸识别方法

近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。

人脸识别的方法很多,当前的一个研究方向是多方法的融合,以提高识别率。

在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化,而称第二类变化为类内变化。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。正是基于上述原因,一直到21 世纪初,国外才开始出现人脸识别的商用,但由于人脸识别算法非常复杂,只能采用庞大的服务器,基于强大的计算机平台。



如果可以的话,可以Te一下colorreco,更好的技术解答。

⑧ 特征检测的技术特点

大多数入侵检测系统都是采用特征检测这种技术,它的主要优点有:1
:容易实现:基于特征的入侵检测的计算模型比较容易实现。主要的匹配算法也都是成熟算法。因此实现上技术难点比较少。 2: 检测精确:对入侵特征的精确描述使入侵检测系统可以很容易将入侵辨别出来。同时,因为检测结果有明显的参照,可以帮助系统管理员采取相应的措施来防止入侵。
3:升级容易:不少基于特征检测的入侵检测系统都提供了自己的规则定义语言,当新的攻击或漏洞出现时,厂商或用户只要根据该攻击或漏洞的特征编写对应的规则,就可以升级系统。

⑨ 特征点检测有什么用

在图像处理中,特征点可以称兴趣点或者角点,三者经常相互使用,即图像的极值点,线段的终点,曲线曲率最大的点或者水平或者竖直方向上属性最大的点等等,这些特征点是图像很重要的特征,对图像图形的理解和分析有很重要的作用。特征点在保留图像图形重要特征的同时,可以代替整幅图像的处理,有效地减少信息的数据量,使其信息的含量很高,有效地提高了计算的速度,有利于图像的可靠匹配,使得实时处理成为可能。
特征点检测就是是对有具体定义的、或者是能够具体检测出来的特征点的检测。目前检测方法很多,具体分有三大类基于灰度图像的角点检测、基于二值图像的角点检测、基于轮廓曲线的角点检测。基于灰度图像的角点检测又可分为基于梯度、基于模板和基于模板梯度组合3类方法,其中基于模板的方法主要考虑像素领域点的灰度变化,即图像亮度的变化,将与邻点亮度对比足够大的点定义为角点。常见的基于模板的角点检测算法有Kitchen-Rosenfeld角点检测算法,Harris角点检测算法、KLT角点检测算法及SUSAN角点检测算法。和其他角点检测算法相比,SUSAN角点检测算法具有算法简单、位置准确、抗噪声能力强等特点。

热点内容
Wcl上传如何选择服务器 发布:2025-01-19 11:17:24 浏览:763
如何编程简单给服务器发一个指令 发布:2025-01-19 11:16:44 浏览:806
python控制台乱码 发布:2025-01-19 10:55:38 浏览:364
安卓鸿蒙苹果哪个好用 发布:2025-01-19 10:32:33 浏览:265
正规物业保安怎么配置 发布:2025-01-19 10:27:30 浏览:519
断裂下载ftp 发布:2025-01-19 10:27:30 浏览:642
安卓导航怎么调对比度 发布:2025-01-19 10:26:52 浏览:26
服务器共享文件如何查看访问记录 发布:2025-01-19 10:08:55 浏览:401
datasourceSQL 发布:2025-01-19 10:01:25 浏览:838
aspnet网站的编译 发布:2025-01-19 10:00:49 浏览:334