微分遗传算法
1. 进化算法的差分算法
差分进化算法(Differential Evolution, DE)是一种新兴的进化计算技术,或称为差分演化算法、微分进化算法、微分演化算法、差异演化算法。它是由Storn等人于1995年提出的,最初的设想是用于解决切比雪夫多项式问题,后来发现DE也是解决复杂优化问题的有效技术。DE与人工生命,特别是进化算法有着极为特殊的联系。
差分进化算法是基于群体智能理论的优化算法,通过群体内个体间的合作与竞争产生的群体智能指导优化搜索。但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒性,且不需要借助问题的特征信息,适于求解一些利用常规的数学规划方法所无法求解的复杂环境中的优化问题。
差分进化算法是一种基于群体进化的算法,具有记忆个体最优解和种群内信息共享的特点,即通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。
DE是一种用于优化问题的启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法 。同遗传算法一样,DE包含变异和交叉操作,但同时相较于遗传算法的选择操作,DE采用一对一的淘汰机制来更新种群。由于DE在连续域优化问题的优势已获得广泛应用,并引发进化算法研究领域的热潮。
DE由Storn 以及Price提出,算法的原理采用对个体进行方向扰动,以达到对个体的函数值进行下降的目的,同其他进化算法一样,DE不利用目标函数的梯度信息,因此对目标的可导性甚至连续性没有要求,适用性很强。同时,算法与粒子群优化有相通之处 ,但因为DE在一定程度上考虑了多变量间的相关性,因此相较于粒子群优化在变量耦合问题上有很大的优势。算法的实现参考实现代码部分。
2. 遗传算法的优缺点
优点:
1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。
另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。
2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。
3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。
另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。
4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。
5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。
缺点:
1、遗传算法在进行编码时容易出现不规范不准确的问题。
2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。
3、遗传算法效率通常低于其他传统的优化方法。
4、遗传算法容易出现过早收敛的问题。
(2)微分遗传算法扩展阅读
遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。
函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。
为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。
3. 蚁群 神经网络 微分进化 遗传算法 具体应用难易程度
要来个对比么?
其中蚁群算法、遗传算法我比较熟悉,神经网络稍有了解,微分进化算法不熟悉。要说应用的难易程度,我排个序,由难到易依次为:神经网络->遗传算法->蚁群算法->微分进化。
具体实施时,除神经网络较复杂外,其他三种算法都还好。
4. 目标方程和约束条件有微分方程,应该怎么用遗传算法拟合
用遗传算法ga函数是可以拟合带有目标方程和约束条件且含有微分方程的系数,其拟合原则是误差最小估计原则。
解决问题的方法:1、建立自定义目标函数;2、建立自定义约束函数;3、建立自定义微分方程函数;4、误差最小控制函数;5、利用遗传算法ga函数求解拟合系数,利用ode45函数求解微分方程;6、建立嵌套函数计算
5. 算法中的算子是什么意思,用于做什么呢请各位大牛指点一下,感激不尽~~
数学中的映射,当映射的作用是把函数映成函数,或者函数映成数的时候,这个映射常常叫做算子。
比如微分算子D,把就是把函数f作用后,把f映成f的导函数。
拉普拉斯算子是一种二阶微分算子。
等等。。。
6. 神经网络中的数学知识
神经网络的设计要用到遗传算法,遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。
1.遗传算法在网络学习中的应用
在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用
(1)学习规则的优化
用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。
(2)网络权系数的优化
用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。
2.遗传算法在网络设计中的应用
用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:
(1)直接编码法
这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。
(2)参数化编码法
参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。
(3)繁衍生长法
这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。
3.遗传算法在网络分析中的应用
遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。
遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。
7. 非线性解析反演与遗传算法的结合反演方法
周辉
(青岛海洋大学海洋地球科学学院,青岛266003)
何樵登
(长春地质学院地球物理系,长春130026)
摘要各向异性介质参数反演通常为非线性优化问题。非线性反演方法可以分为两大类:随机搜索方法,如Monte Carlo法、模拟退火和遗传算法及基于非线性最小平方理论的非线性解析反演方法。遗传算法能寻找到全局最优解,但它为一种较费时的方法。非线性解析反演方法能给出一个与初始模型有关的局部最优解。然而,这种方法具有较快的收敛速度。遗传算法与非线性解析反演方法相结合的反演方法利用这两种反演方法的优点而克服其缺点。因此,结合反演方法既能快速收敛,又能寻找到全局最优解。如何合理地将遗传算法和非线性解析反演方法结合是十分重要的。本文提出一种结合方案,即在连续若干次遗传算法迭代后作一次非线性解析反演。理论算例表明结合反演方法具有上述特点。
关键词遗传算法非线性解析反演非线性结合反演各向异性介质
1引言
遗传算法为随机搜索类方法之一,它以概率论为理论基础,用于求解多极值复杂优化问题[9]。遗传算法不要求已知模型空间中后验概率密度的形状并能广泛搜索模型空间。遗传算法模拟自然选择和遗传规律,并遵循适者生存的原则。
遗传算法由Holland在1975年提出[4]。Berg首先将遗传算法应用于地球物理优化问题[1]。Stoffa等系统地研究了种群大小、交叉概率、选择概率和变异概率对多参数优化问题收敛性和收敛速度的影响[11]。Sen等讨论了在选择概率中引入温度参数的作用并提出一些退火方案[10]。周辉等则研究了目标函数与收敛速度和解的精度的关系[16]。
基于最小平方优化理论的非线性反演方法是两大类反演方法之一。当给定的初始模型位于目标函数全局最优解所在的峰谷附近时,这种下降类方法能给出正确解而与初始模型位置无关。下降类算法研究得较深入,应用较广。
Tarantola提出一种基于广义最小二乘法的多维多偏移距声波地震波形解释的一般性非线性地震波形反演方法[12]。随后,Tarantola将该理论推广于各向同性介质的弹性波反演[13]。Gauthier等用理论数据验证了Tarantola提出的方法的正确性[2]。稍后,Tarantola研究非线性解析法反射波弹性反演的策略,指出以纵横波的波阻抗和密度作为反演参数,才尽可能使反演参数之间相互独立[14]。Pan用τ—P变换研究层状声学介质中平面波地震记录非线性解析反演的理论和可行性[6]。为了更多地利用地震数据中的信息,包括VSP资料中反射和转换信息,Mora作了一些工作[5]。当仅用反射数据时反演主要解决引起反射的P波和S波的波阻抗突变。当利用转换数据时,则能分辨大尺度的P波和S波速度变化。Sambridge等改进了修改模型的方法[8]。在子空间中,可同时得到P波、S波波阻抗和密度。周辉等将非线性梯度反演方法推广于多维、多道、多分量任意弹性各向异性介质参数的反演[17]。
非线性解析反演方法和遗传算法结合的反演方法利用非线性解析反演和遗传算法的优点,克服它们的缺点。因此,结合反演方法不仅能搜索到全局最优解,而且能较快地收敛。Porsani等在遗传算法和广义线性反演方法相结合方面作了一些研究[7]。
本文讨论各向异性介质的非线性解析反演方法和遗传算法与非线性解析反演方法相结合的结合反演方法[17]。对于遗传算法读者可参考遗传算法的相关文献[3,9~11]。
2各向异性介质参数非线性解析反演方法
2.1共轭梯度法
反演的目的是利用地面或井中测得的位移场ui(xr,t)求取地下介质密度分布ρ(x)和弹性参数分布Cijkl(x)。ρ(x)、Cijkl(x)称为模型参数。x为研究介质中或边界上任一点,x=(x1,x2,x3),xr为接收点。反演的目标是使目标函数
岩石圈构造和深部作用
取极小值。其中Cd、Cm分别为数据(波场)和模型参数的协方差算子。m0为先验模型参数,m为反演过程中求得的模型参数。由于模型参数有多个,故用向量表示。ucal为给定m的波动方程正演记录,uobs为观测波场,上角标t表示转置。地震记录u和模型参数m之间的函数关系为
岩石圈构造和深部作用
g为非线性算子,(2)式为波动方程的算子形式。记第n次迭代时的模型参数为mn,则有
岩石圈构造和深部作用
及共轭梯度法的迭代公式[15]
岩石圈构造和深部作用
其中Gn为g对mn的Frechet导数,ηn为一常数,可由多种方法计算[5,8]。
梯度
式(4)为梯度反演方法的基本公式。当该公式中的每一量都已知时,迭代就可进行。在这些变量中,最关键的是梯度向量。
2.2目标函数
在最小二乘理论中,权函数是协方差算子逆的核。假设数据集中的误差是不相关的,它仅取决于时间或源和接收器的位置,那么有[14]
岩石圈构造和深部作用
其中σ为数据的均方差。
2.3各向异性介质中的弹性波动方程
令fi(x,t;xs)是第s次激发的内体力密度,Ti(x,t;xs)是地球表面S的应力矢量分量,ni(x)是表面的单位法向分量。那么与第s次激发相应的位移由以下微分方程组给出[15]
岩石圈构造和深部作用
2.4梯度向量
式(4)中梯度向量的分量为[17]
岩石圈构造和深部作用
其中,T为地震记录的长度,
岩石圈构造和深部作用
其中,t∈[T,0],
3结合反演方法
3.1遗传算法和非线性解析反演方法的优缺点
遗传算法是利用概率论来求解多极值复杂优化问题的一种随机搜索方法,由一组随机选取的模型开始,不需要更多的先验信息,广泛而有效地对模型空间的最优部分采样。尽管遗传算法是基于自然选择、遗传规律,搜索模型空间的最优部分而求得最优解,但它是一种计算量很大的方法。由于地震模型空间大,用全局最优化方法估计各向异性介质参数的地震波形反演十分费时。
目标函数的梯度信息是非线性解析反演方法修改模型参数的依据,它能给出一个接近初始模型的一个局部最优解。如果初始模型选择得合适,即当初始模型处在全局最优解所在的目标函数低谷时,非线性解析反演方法能收敛于全局最优解。然而,恰好给出一个接近全局最优解的初始模型的概率是非常小的,尤其对没有模型参数的任何先验信息的情况。但应强调的是,非线性解析反演方法具有较快的收敛速度。
发挥非线性解析反演方法快速收敛和遗传算法能搜索到全局最优解的优点,而克服前者仅能寻找到局部最优解和后者运算量大的缺点是很有意义的。非线性解析反演方法和遗传算法相结合的反演方法可达到上述目的。在结合反演方法中,遗传算法的作用是提供接近全局最优解的模型,非线性解析反演的作用是尽快求出全局最优解。因此,结合反演方法具有搜索到全局最优解的能力和比遗传算法收敛速度快的特点。
3.2结合方案
遗传算法在优化过程中连续不断地搜索整个模型空间。在每次迭代结束后,得到一个本代的最优模型。根据遗传算法的数学原理[3],最优模型的数量在下一代中得以增加,同时经交叉和变异作用又有新的模型产生。在下一代种群中,最优模型可能与前一代的相同,也有可能劣于前一代的最优模型。所有这些最优模型可能在目标函数的同一低谷处,也有可能在其它低谷处。遗传算法寻找最优模型要经过多次迭代才能确定一个极值。遗传算法的随机性导致遗传算法是一种费时的方法。然而正是遗传算法的这种随机性保证了它能搜索到全局最优解。
如果将每次遗传算法迭代的最优解作为非线性解析反演的初始模型,非线性解析反演可以找出与初始模型毗邻的局部最优解。由于非线性解析反演是一种确定性的方法,它按目标函数的梯度方向修改模型,所以非线性解析反演方法只需几次迭代即可收敛。非线性解析反演求得的解是否为全局最优解,非线性解析反演方法本身是无法得以保证的。只有当遗传算法提供接近全局最优解的初始模型时,非线性解析方法反演才能收敛到全局最优解。
结合反演方法中遗传算法和非线性解析反演方法的匹配方式是十分重要的。非线性解析反演方法得到接近遗传算法提供的初始模型的局部最优解后,在以后若干代中因遗传算法的随机性而使其最优解与该局部最优解相同。如果每次遗传算法迭代后作非线性解析反演,那么结合反演的结果在几代内都是相同的。显然其中的一些非线性解析反演是没有必要的。因此,结合方式应为在连续多次遗传算法迭代后作一次非线性解析反演,然后将非线性解析反演的结果作为下一代种群中的一个母本模型。图1为结合反演的框图。
图1结合反演框图
4算例
为了验证结合反演方法的优越性,对一维多层横向各向同性介质参数的反演理论实例作了分析。
图2是目标函数值与迭代次数的关系图。在该结合反演算例中每次遗传算法迭代后就作一次非线性解析反演迭代。结合反演的误差在开始几次迭代中下降很快,尤其在前3次。结合反演方法在第10次迭代达到的较小误差,遗传算法在第42次迭代才达到。结合反演的误差比遗传算法的跳跃得严重。这是因为非线性解析反演得到的模型在遗传算法中作为母代参加繁衍。这个模型因遗传算法的随机性常常被新的模型替代。这两个模型可能位于目标函数两个不同的低谷中,因此非线性解析反演的结果不同。
尽管结合反演的目标函数有些振荡,但也存在连续几次迭代目标函数几乎不变的现象。这意味着这几次迭代的最优模型是很接近的。在这种情况下非线性解析反演不能提供较大的改进。所以,此时的非线性解析反演是没有必要的,否则只能增加计算量。
图2结合反演(实线)和遗传算法(虚线)的误差与迭代次数的关系
结合反演中每次遗传算法迭代后作一次非线性解析反演迭代
图3是另一个例子。在该结合反演例子中,每五次遗传算法迭代作一次非线性解析反演。在这里遗传算法占主要地位。此时结合反演的误差函数明显比遗传算法的小。结合反演的误差在第5次迭代末突然下降,并在第10次迭代时的小误差,遗传算法在42代才达到。遗传算法始终没有到达结合反演的最小误差。结合反演的误差在后期迭代过程中平稳下降,这是遗传算法占主导地位的原因。
从该例可知,若遗传算法与非线性解析反演方法比较合理地结合,结合反演方法比遗传算法具有快得多的收敛速度。
5结论
非线性结合反演方法扬遗传算法和非线性解析反演方法之长,抑其之短,它是一种具有较快收敛速度的全局反演方法。
在结合反演中遗传算法和非线性解析反演方法的结合方式是重要的。从算例可得出,五次遗传算法迭代后作一次非线性解析反演的结合反演的效果明显优于每次遗传算法迭代后都作非线性解析反演的结合反演的效果。但是在结合反演中连续作多少次遗传算法迭代及连续迭代次数在整个迭代过程中的可变性还有待于进一步研究。
图3结合反演(实线)和遗传算法(虚线)的误差与迭代次数的关系
结合反演中每五次遗传算法迭代后作一次非线性解析反演迭代
在结合反演中遗传算法的作用是提供接近全局最优解的初始模型。结合反演的运算速度主要取决于遗传算法的运算速度。均匀设计理论可以应用于遗传算法以加快随机搜索的速度。
与遗传算法相同,其它随机搜索方法也可用来与非线性解析反演方法形成结合反演方法。
参考文献
[1]E.Berg.Simple convergent genetic algorithm for inversion of multiparameter data.SEG60 Expanded Abstracts,1990,Ⅱ,1126~1128.
[2]O.Gauthier,J.Virieux and A.Tarantola.Two-dimensional nonlinear inversion of seismic waveforms:Numerical results.Geophysics,1986,51,1387~1403.
[3]D.E.Goldberg.Genetic Algorithms in Search,Optimiztion,and Machine Learning.Addison-Wesley,Reading,MA,1989.
[4]J.H.Holland.Adaptation in Natural and Artifical Systems.The University of Michigan Press,Ann Arbor,1975.
[5]P.Mora.2D elastic inversion of multi-offset seismic data.Geophysics,1988,52,2031~2050.
[6]G.S.Pan,R.A.Phinney,and R.I.Odom.Full-waveform inversion of plane-wave seismograms in stratified acoustic media:Theory and feasibility.Geophysics,1988,53,21~31.
[7]M.J.Porsani,P.L.Stoffa,M.K.Sen,et al..A combined Genetic and linear inversion algorithm for seismic wave-form inversion.SEG63 Expanded Abstracts,1993,692~695.
[8]M.S.Sambridge,A.Tatantola and Kennet.An alternative strategy for nonlinear inversion of seismic waveforms.Geophysical Prospecting,1991,39,723~736.
[9]M.Sambridge,and G.Drijkoningen.Genetic algorithms in seismic waveform inversion.Geophys.J.Int.,1992,109,323~342.
[10]M.K.Sen,P.L.Stoffa.Rapid sampling of model space using genetic algorithms:examples from seismic waveform inversion.Geophys.J.Int.,1992,109,323~342.
[11]P.L.Stoffa,M.K.Sen.Nonlinear multiparametre optimization using genetic algorithms:Inversion of plane-wave seismograms.Geophysics,1991,56,1794~1810.
[12]A.Tarantola.Inversion of seismic reflection data in the acoustic approximation.Geophysics,1984(a),49,1259~1266.
[13]A.Tarantola.The seismic reflection inverse problem.In:F.Santosa,Y.-H.Pao,W.W.System,and C.Holland Eds.Inverse problems of acoustic and elastic waves.Soc.Instr.Appl.Math.,1984(b),104~181.
[14]A.Tarantola.A strategy for nonlinear elastic inversion of seismic reflection data.Geophysics,1986,51,1893~1903.
[15]A.Tarantola.Inverse problem theory:Methods for data fitting and model parameter estimation.Elsevier Science Publ.Co.Inc.,1987.
[16]周辉,何樵登.遗传算法在各向异性介质参数反演中的应用.长春地质学院学报,1995,25,增刊1,62~67.
[17]周辉.各向异性介质波动方程正演及其非线性反演方法研究.长春地质学院博士论文,1995.
8. 小波分析法和遗传算法之间是什么样的关系
1、小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征, 通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。小波变换基,既具有频率局域性质,又具有时间局域性质。小波变换的多分辨度的变换,能在多个尺度上分解,便于观察信号在不同尺度(分辨率)上不同时间的特性。小波变换存在快速算法,对于M点序列而言,计算复杂性为:O(M),处理快速。小波变换基函数有多种类型,可以是正交的,也可以是非正交(双正交),比傅里叶变换更加灵活。小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图像处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去污等。在医学成像方面的减少B超、CT、核磁共振成像的时间,提高分辨率等。
(1)小波分析用于信号与图像压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。
(2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。
2、遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借
用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性
的提高。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。遗传算法的一些主要应用领域:
(1)函数优化
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。
(2)组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得到成功的应用。 此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
综上所述,小波分析法和遗传算法主要有一下几方面的不同:(1)算法原理不同;(2)算法的应用侧重领域不同。遗传算法不是求解小波分析函数的一种算法。
9. 如何将微分方程组转化为约束条件,进而使用遗传算法求解
不用转化也可以求解的