当前位置:首页 » 操作系统 » em算法

em算法

发布时间: 2022-01-09 16:37:12

❶ EM算法有什么用

EM算法是主要用于含隐变量的参数估计,包含求期望和求极大两步

❷ em算法的EM算法

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。
最大期望算法经过两个步骤交替进行计算:
第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;
第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。
M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
总体来说,EM的算法流程如下:
1.初始化分布参数
2.重复直到收敛:
E步骤:估计未知参数的期望值,给出当前的参数估计。
M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。

❸ em算法怎么做聚类

1.一般概念介绍

最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

❹ em算法原理

我最近也在看EM算法,主要是它在无监督学习中的应用,例子倒是没有,原理差不多弄明白了一些,其实是出于一种很自然的想法,似然度均值的最大化,但是中间有些问题就是在迭代的过程中似然度是单调增加的,这个证明过程比较繁琐,具体你在模式识别中的应用可以参考这个WiKi页:http://en.wikipedia.org/wiki/Expectation-maximization_algorithm

❺ 急求如何用MATLab实现EM算法

最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计。
实现代码如下:
02 Jul 2015 hui cheng
06 May 2015 Mei Dong
very good job!

12 Nov 2014 Jobaer
please, sir , send me a source code on image segmentation. I want to segement weeds from soil.My email address is [email protected] .

18 Jan 2014 HuangJunFeng HuangJunFeng
16 Dec 2013 widdy
19 Feb 2013 Tong Chu
01 Jan 2013 manas nag
sir
after executing this it is declaring that k is undefined

04 Dec 2012 Jason Rebello
Some people want to know how to view the segmented image. For example suppose you have two classes ie k=2; us the following code to view it
[row col] = size(ima);
final_img = zeros(row,col);
for i=1:row
for j=1:col
if mask(i,j)==1
final_img(i,j)=1;
else
final_img(i,j)=255;
end
end
end
imshow(final_img/255);
This is a naive way of viewing it .. you may have to change somethings if k>2. Anywayz hope it helps. The mask basically stores the segmented image.

16 Nov 2011 surya
great job.i am using the same algorithm in my project for x-ray images.can u please tell how to view the segmented image

Comment only

18 Feb 2010 prashanth
Sir, I am starting my project on the same subject. i was unable to find the algorithm psuedocode for em algorithm. kindly send me one at [email protected]. Also can u just tell me the explanation for the source code..

Comment only

21 Dec 2009 maria
Hi, could you please explain how I can use "mask" to see result of segmentation??

Comment only

17 Mar 2009 Patrick
Greetings Prof., Very nice .. could you please let me know what exactly does the mask variable store ? As what i see it classifies each pixel that falls within each class . Am i correct in that assumption?
Thanks

24 May 2008 darko brajicic
great job!

27 Apr 2008 Bilo Bilo
Thanks

15 Aug 2007 smiled fisher
06 Nov 2006 Karthik Raja T
HI, Greetings,can it for my color image segmentation ?

04 Sep 2006 Mikel Rodriguez
12 Jul 2006 carlos mas
03 May 2006 Mohamed Sami
look when u make a code u must show us the output to see it then u read ur code .. try to explain that with output we can see bye

❻ matlab实现EM算法

1. EM算法程序:
http://www.mathworks.com/matlabcentral/fileexchange/3713-em-algorithm-for-clustering-emfc-m

2. EM image segmentation:
http://www.mathworks.com/matlabcentral/fileexchange/10956-em-image-segmentation

3. 贝叶斯图像分割程序:(Bayseian image segmentation)
没有找到合适的程序代码 :-(

❼ em算法的EM算法简述

迭代使用EM步骤,直至收敛。
可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。
EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据(incomplete data)。
假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成,X 和Z = (X,Y)分别称为不完整数据和完整数据。假设Z的联合概率密度被参数化地定义为P(X,Y|Θ),其中Θ表示要被估计的参数。Θ的最大似然估计是求不完整数据的对数似然函数L(X;Θ)的最大值而得到的:
L(Θ;X)= log p(X|Θ) = ∫log p(X,Y|Θ)dY ;
EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc(X;Θ)的期望来最大化不完整数据的对数似然函数,其中:
Lc(X;Θ) =log p(X,Y |Θ) ;
假设在算法第t次迭代后Θ获得的估计记为Θ(t) ,则在(t+1)次迭代时,
E-步:计算完整数据的对数似然函数的期望,记为:
Q(Θ|Θ (t)) = E{Lc(Θ;Z)|X;Θ(t)};
M-步:通过最大化Q(Θ|Θ(t) ) 来获得新的Θ 。
通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ,并在新的参数下重新确定模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。
EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优。

❽ 关于EM算法有哪些书,论文或博客推荐

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数。

❾ 如何使用EM算法估计参数

[assembly: SecurityPermission(SecurityAction.RequestMinimum,Execution=false)]

Execution=false到底执不执行?
SecurityAction,除了RequestMinimum。还有其它的选项,但是,好像很多都不能用。这是为什么?本人现在使用Windows Server 2003, CentOS Linux 5.2, Windows XP, VirtualBox 2.1.4, Visual Studio 2005, Eclipse 3.4, Microsoft.NET Framework 2.0 SP

❿ 为什么em算法容易陷入局部最优

在统计计算中,最大期望算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量

热点内容
明日之后如何用账号和密码 发布:2024-12-27 14:56:41 浏览:492
qtcreator的编译器 发布:2024-12-27 14:51:45 浏览:524
m6手动中配有哪些配置 发布:2024-12-27 14:38:51 浏览:446
在别的电脑怎么知道服务器ip 发布:2024-12-27 14:37:21 浏览:144
为什么是微信支付密码是什么 发布:2024-12-27 14:22:26 浏览:189
全民k歌在哪个文件夹 发布:2024-12-27 14:18:23 浏览:396
androidjava教程 发布:2024-12-27 14:17:34 浏览:715
vue源码逐行解析 发布:2024-12-27 14:16:19 浏览:675
无线打印服务器搭建 发布:2024-12-27 13:50:50 浏览:290
arm的存储器 发布:2024-12-27 13:47:24 浏览:982