当前位置:首页 » 操作系统 » 统计学算法

统计学算法

发布时间: 2022-01-09 16:35:42

① 统计学中分组数据四分位数的算法

第三个四分位数等于该样本中所有数值由小到大排列后第75%的数字.既然个数已经给了,并且利润是由小到大排好序的了,十分容易的.N=120,Q3=3*(N+1)/4=90.25, 也就是说第三四分位数就是第90.25个,19+30+42=91>90.25,所以说第三四分位数利润为400-500万元

② 统计学 概念

1、同质(homogeneity)与变异(variation)

严格地讲,同质是指被研究指标的影响因素完全相同。但在医学研究中,有些影响因素往往是难以控制的(如遗传、营养等),甚至是未知的。所以,在统计学中常把同质理解为对研究指标影响较大的、可以控制的主要因素尽可能相同。例如研究儿童的身高时,要求性别、年龄、民族、地区等影响身高较大的、易控制的因素要相同,而不易控制的遗传、营养等影响因素可以忽略。

同质基础上的个体差异称为变异。如同性别、同年龄、同民族、同地区的健康儿童的身高、体重不尽相同。事实上,客观世界充满了变异,生物医学领域更是如此。哪里有变异,哪里就需要统计学。若所研究的同质群体中所有个体一模一样,只需观察任一个体即可,无须进行统计研究。

2、总体(population)与样本(sample)

任何统计研究都必须首先确定观察单位(observed unit),亦称个体(indivial)。观察单位是统计研究中最基本的单位,可以是一个人、一个家庭、一个地区、一个样品、一个采样点等。

总体是根据研究目的确定的同质观察单位的全体,或者说,是同质的所有观察单位某种观察值(变量值)的集合。例如欲研究山东省2002年7岁健康男孩的身高,那么,观察对象是山东省2002年的7岁健康男孩,观察单位是每个7岁健康男孩,变量是身高,变量值(观察值)是身高测量值,则山东省2002年全体7岁健康男孩的身高值构成一个总体。它的同质基础是同地区、同年份、同性别、同为健康儿童。总体又分为有限总体(finite population)和无限总体(infinite population)。有限总体是指在某特定的时间与空间范围内,同质研究对象的所有观察单位的某变量值的个数为有限个,如上例;无限总体是抽象的,无时间和空间的限制,观察单位数是无限的,如研究碘盐对缺碘性甲状腺病的防治效果,该总体的同质基础是缺碘性甲状腺病患者,同用碘盐防治;该总体应包括已使用和设想使用碘盐防治的所有缺碘性甲状腺病患者的防治效果,没有时间和空间范围的限制,因而观察单位数无限,该总体为无限总体。

在实际工作中,所要研究的总体无论是有限的还是无限的,通常都是采用抽样研究。样本是按照随机化原则,从总体中抽取的有代表性的部分观察单位的变量值的集合。如从上例的有限总体(山东省2002年7岁健康男孩)中,按照随机化原则抽取100名7岁健康男孩,他们的身高值即为样本。从总体中抽取样本的过程为抽样,抽样方法有多种,详见第14章。抽样研究的目的是用样本信息推断总体特征。

统计学好比是总体与样本间的桥梁,能帮助人们设计与实施如何从总体中科学地抽取样本,使样本中的观察单位数(亦称样本含量,sample size)恰当,信息丰富,代表性好;能帮助人们挖掘样本中的信息,推断总体的规律性。

3、资料(data)与变量(variable)及其分类

总体确定之后,研究者应对每个观察单位的某项特征进行测量或观察,特征称为变量。如“身高”、“体重”、“性别”、“血型”、“疗效”等。变量的测定值或观察值称为变量值(value of variable)或观察值(observed value),亦称为资料。

按变量的值是定量的还是定性的,可将变量分为以下类型,变量的类型不同,其分布规律亦不同,对它们采用的统计分析方法也不同。在处理资料之前,首先要分清变量类型。

1)数值变量(numerical variable):其变量值是定量的,表现为数值大小,可经测量取得数值,多有度量衡单位。如身高(cm)、体重(kg)、血压(mmHg kPa)、脉搏(次/min)和白细胞计数(×10 9 /L)等。这种由数值变量的测量值构成的资料称为数值变量资料,亦称为定量资料(quantitative data)。大多数的数值变量为连续型变量,如身高、体重、血压等;而有的数值变量的测定值只能是正整数,如脉搏、白细胞计数等,在医学统计学中把它们也视为连续型变量。

2)分类变量(catagorical variable):其变量值是定性的,表现为互不相容的类别或属性。分类变量可分为无序变量和有序变量两类:

(1)无序分类变量(unordered categorical variable)是指所分类别或属性之间无程度和顺序的差别。,它又可分为①二项分类,如性别(男、女),药物反应(阴性和阳性)等;②多项分类,如血型(O、A、B、AB),职业(工、农、商、学、兵)等。对于无序分类变量的分析,应先按类别分组,清点各组的观察单位数,编制分类变量的频数表,所得资料为无序分类资料,亦称计数资料。

(2)有序分类变量(ordinal categorical variable)各类别之间有程度的差别。如尿糖化验结果按-、±、+、++、+++分类;疗效按治愈、显效、好转、无效分类。对于有序分类变量,应先按等级顺序分组,清点各组的观察单位个数,编制有序变量(各等级)的频数表,所得资料称为等级资料。

变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析;若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析。有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。

4、随机事件(random event)与概率(probability)

医学研究的现象,大多数是随机现象,对随机现象进行实验或观察称为随机试验。随机试验的各种可能结果的集合称为随机事件,亦称偶然事件,简称事件。例如用相同治疗方案治疗一批某病的患者,治疗转归可能为治愈、好转、无效、死亡四种结果,对于一个刚入院的患者,治疗后究竟发生哪一种结果是不确定的,可能发生的每一种结果都是一个随机事件。

对于随机事件来说,在一次随机试验中,某个随机事件可能发生也可能不发生,但在一定数量的重复试验后,该随机事件的发生情况是有规律可循的。概率是描述随机事件发生的可能性大小的数值,常用P表示。例如,投掷一枚均匀的硬币,随机事件A表示“正面向上”,用 n表示投掷次数;m表示随机事件A发生的次数;f表示随机事件A发生的频率(f=m/n),0≤m≤n, 0≤f≤1。
用不同的投掷次数n作随机试验,结果如下:m/n=8/10=0.8, 7/20=0.35,…… , 249/500=0.498, 501/1000=0.501, 10001/2000=0.5000,由此看出当投掷次数n足够大时,f=m/n→0.5,称P(A)=0.5,或简写为:P=0.5。当n足够大时,可以用f估计P。

随机事件概率的大小在0与1之间,即0<P<1,常用小数或百分数表示。P越接近1,表示某事件发生的可能性越大;P越接近0,表示某事件发生的可能性越小。P=1表示事件必然发生,P=0表示事件不可能发生,它们是确定性的,不是随机事件,但可以把它们看成随机事件的特例。

若随机事件A的概率P(A)≤a,习惯上,当a=0.05时,就称A为小概率事件。其统计学意义是小概率事件在一次随机试验中不可能发生。例如,某都市大街上疾驶的汽车撞伤行人的事件的发生概率为1/万,但大街上仍有行人,这是因为 “被撞”事件是小概率事件,所以行人认为自己上街这“一次试验”中不会发生“被撞”事件。“小概率”的标准a是人为规定的,对于可能引起严重后果的事件,如术中大出血等,可规定a=0.01,甚至更小。

③ 统计学中的P值应该怎么计算

P值的计算公式是

=2[1-Φ(z0)] 当被测假设H1为 p不等于p0时;

=1-Φ(z0) 当被测假设H1为 p大于p0时;

=Φ(z0) 当被测假设H1为 p小于p0时;

总之,P值越小,表明结果越显着。但是检验的结果究竟是“显着的”、“中度显着的”还是“高度显着的”需要根据P值的大小和实际问题来解决。

(3)统计学算法扩展阅读

统计学中回归分析的主要内容为:

1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。

2、对这些关系式的可信程度进行检验。

3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显着的,哪些自变量的影响是不显着的,将影响显着的自变量加入模型中,而剔除影响不显着的变量,通常用逐步回归、向前回归和向后回归等方法。

4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。



④ 如何学好《统计学原理》

任何一门课程,其前言、绪言中都有修练心法。要是那些东西不管用,大约得解决自己的定力了,呵呵。

也可以理解成这样一我句话:抓住主要线索,理解基本概也念。

应当注意如下几点:
一、把握教材的体系和知识结构,分清重点难点,认真组织学习。
《统计学》课程使用的教材是陈嗣成、冯虹主编的《新编统计学原理》。总体上看,大多数学员都认为该门课程是比较难学的课程之一,究其原因有以下几个方面:一是有些内容比较抽象,不易于理解;二是有些内容涉及到一些数学知识,学习起来有些困难;三是该门课程的内容较多,不易于从总体上把握。实际上,如果我们能对该门课程的性质和内容体系有一个清楚的认识,学习起来还是比较容易的。
从学科性质上看,统计学原理是一门应用性方法论学科。它既包括适用于各个领域的一般性统计方法,如抽样估计、相关与回归等;也包括适用于某一专业领域的特殊统计方法,如指数分析方法等,该门课程并不着重于统计方法数学原理的推导,而是侧重于阐明统计方法背后隐含的统计思想、特点和这些方法在实际各领域中的具体应用。
对照课程教材可以看出,第一章统计绪论,在介绍了统计的产生和发展之后,从总体上描述了统计学研究的对象和方法、统计学的基本范畴和统计的职能,使学员对统计学科有一个基本的认识。第二章阐述统计调查与统计整理,通过这章的学习,要求学员了解统计调查和统计整理的基本任务与要求;重点掌握统计调查方案和统计调查方法,统计整理的步骤,会阅读、运用和制作统计表。第三章介绍统计整理过程中的主要方法——分组和次数分布。统计分组是统计方法论的重要组成之一,次数分布是统计分组的结果。通过学习,学员要能根据统计目的的不同,对统计总体进行科学的分组,并对次数分布进行正确的描述。第四章和第五章介绍三大综合指标——总量指标、相对指标和平均指标,同时介绍了与之相关的标志变异指标。对各类综合指标的特点,运用场合及其计算方法要求熟练掌握,运用自如。我们学习第一、二、三、四章后,对统计学的基本范畴、统计工作的基础和原理有了一定的了解。这四章学习要求理解的内容多,概念性较强,而计算题量不多,计算方法较简单,学员往往容易忽视。须知这正是掌握统计学科的基础。建议在学习时,联系经济实际加深理解。
教材第六章抽样估计,第七章相关和回归分析,第八章统计指数,第九章时间数列分析,第十章平衡分析是在统计调查和整理以后,对各类经济统计数据和综合指标进行统计分析方法的运用。要求学员理解和掌握这些方法,并能解决有关的实际问题。由于第六、七、八、九、十章涉及的数学计算较多,公式难记,有的学员由于经济数学基础不牢,害怕计算,往往这几章都听不懂,做题困难。建议在学习时,以理解运用方法为主,不要去追求公式的推导,以掌握教材例题和计算程序为主,不要把经济统计课理解成为数学课。第六章抽样推断,要求掌握利用抽样资料来估计总体的数量特征,计算抽样误差,估计总体的平均指标和成数指标。第七章相关分析回归分析是研究变量之间相互关系密切程度和联系方式的重要方法。通过学习,要理解相关分析的有关概念,掌握计算相关系数和配合回归方程进行相关分析的方法。第六、七章与经济数学基础数理统计部分联系密切,这两章的学习,可以参阅经济数学基础相关的内容,增强对这些统计分析方法的运用能力。第八章指数分析,要求了解指数的意义,指数体系和指数数列。掌握各种指数的计算,编制综合指数,平均指数表,运用指数体系表进行因素分析。第九章时间数列分析,介绍了时间数列表的编制和分析方法,要求熟练掌握时间数列的各项分析指标及计算方法,并能结合实际分析社会经济现象数量方面的变化过程。以上第六章至第十章分别讲授了统计分析、估计及各类指数体系制表分析的原理和方法,是统计分析技术的主要内容。
第十一、十二、十三章分别介绍统计综合分析、统计体制和法制和国民经济核算体系的主要指标,都以理解记忆为主。
二、注意科学的学习方法
要学好一门课程,首先应掌握正确的学习方法,针对统计学原理课程的内容和特点,在学习方法和技巧上提出几点看法,供学员们参考。
1.从整体、局部到知识点。
在弄清教材内容体系及各章节之间逻辑关系的基础上,学习每一章时,应先了解该章在全书中的地位,与前后章节之间的联系,然后再弄清本章的内容组成,各节之间的联系,最后再去掌握每一节的具体内容和知识点。
2.先理解、后记忆。
学习《统计学》,首先要掌握教材中的各个基本概念和范畴。这些概念和范畴很重要,但不能死记硬背,要通过理解来加强记忆,要抓住要点,能用自己的认识和语言表达出来。同时,要能联系实际或其它课程的知识,并将它们具体落实到每一个概念和范畴上去,因为这些概念和范畴都是从具体实践中抽象出来的,学习时也要能够返回到具体实践中去。
统计学中的方法问题很多,许多计算公式也需要记住并会运用。初学统计的学员往往会认为,统计学中的计算都有现成的公式可以套,只要数学基础好并记住公式,计算没有多大问题。然而,事实上有些学员即使记住了计算公式仍会做错习题。可见,仅仅具有数学基础和记住计算公式是远远不够的,因为统计学毕竟是一门方法论的科学,它所研究的是社会经济现象的数量方面,不同于纯数学,如果对社会经济现象认识不清,即便背熟了计算公式,也未必能做到灵活运用。
怎样才能将统计学中的计算方法和公式恰当运用到社会经济现象中去,除了需要具备一定的数学基础、记住计算公式以外,更为重要的是对社会经济现象内涵的理解。有些习题表面上看很简单,但其中却绕了不少的弯子,只有经过仔细剖析,真正理解其涵义,才能灵活运用各种计算公式。下面举 一例题说明。
某企业工业总值和职工人数资料
问:一季度人均产值是多少?
乍一看,这道题很简单,但要想得到正确的答案,还需要有分析能力加细心才行。因为像这类题最容易出现以下两种错误:
第一,不审清题意,错误地计算成了一季度的每月人均产值。
第二,分不清时期指标与时点指标的区别,不注意计算所需资料的时期与所给资料时期的界限,错误地将四月份的工业总产值当作一季度的产值加在一起计算。
下面让我们来剖析一下这个例子:首先,工业总产值是时期指标,习题要求是计算一季度的人均产值;因此,我们需先计算出一季度的工业总产值:
∑a=4910+4974+5116=15000(万元)
这里,四月份的产值不能加起来,因为习题中要求计算的是一季度的人均产值;
其次,月初人数是时点指标,且数列中每一个指标数值都在每个月的月初,可见,这是时间间隔相等的时点数列,因而可用“首末折半法”公式进行计算(这里四月份的人数实际上可看成是三月末的人数),则一季度职工平均人数:
由于职工人数是时点指标,在一个季度之内,只能计算它的平均数,而不能将各月人数简单加总得到一季度的人数,这是显而易见的;最后,计算一季度人均产值:
即平均每个工人在一季度中共创产值15万元。从该例的剖析中可以看出,深入理解社会经济现象的涵义、灵活运用计算方法和计算公式是统计计算的关键所在。
3.多做习题,通过练习掌握方法和内容。
做习题是掌握统计方法和公式的重要手段,只记住公式,不做习题,不仅公式难以记住,即使记住了,也不会应用。有的学员只死记公式,不愿做练习题,结果考试做题时不知从何处人手,或者不会用公式,解决这一问题的唯一方法就是多做习题。在最初做题时,可先按照书上的例题去做,然后逐步养成独立完成的习惯。另外,做题时,要注意弄清楚给定的条件,不要盲目去套公式。

要是有条件,到万方数据去看下面的文献,或者直接找印刷版杂志看看。

抓住主要线索理解基本概念--如何学好《统计学原理》
On How to Understand the Basic Concept by Catching the Main Idea
<<福建商业高等专科学校学报 >>2004年02期
林丽碧

"抽象"和"难学"是初学<统计学原理>的学生的共同感受.如何使初学者尽快入门和渐入佳境并取得良好的学习效果,作为一位统计教师,笔者从四个方面阐述学习该门课的一些方法,以期对学生学好该门课能有所帮助.

关键词: 统计学原理 , 主要线索 , 基本概念 , 理解和掌握

⑤ 统计学专业综合都包括哪些科目

统计学专业课程设置:
数学分析、几何代数、数学实验,常微分方程,复变函数,实变与泛函、概率论、数理统计,抽样调查,随机过程,多元统计,计算机应用基础,程序设计语言,数据分析及统计软件、回归分析,可靠性数学,实验设计与质量控制,计量经济学,经济预测与决策,金融数学,证券投资的统计分析,数值分析,数据结构与算法,数据库管理系统,计算机网络系统,系统分析与软件设计。
学习内容包括:
资料的搜集方法、资料的处理归纳方法、资料的分析方法。教学方法为在一般性面授基础上,辅以各种类型的案例分析,以提高学生的实践能力,还有较多的实践机会,如要围绕一个课题,自己设计调查问卷,采集数据,再对数据进行处理。生产实习、科研训练或毕业论文(设计)等,一般安排10~20周。
专业课和主要基础课:数学分析、解析几何、高等代数、微分方程、复变函数、实变函数与泛函分析、近世代数
相近专业:
数学与应用数学(070101)、信息与计算科学(070102)。

⑥ 统计学中的柏拉图算法是什么

柏拉图其人(希腊语:∏λάτων,英语:Plato,约公元前427年-前347年)不仅是古希腊哲学,也是全部西方哲学乃至整个西方文化最伟大的哲学家和思想家之一。

他原名叫亚里斯多克勒斯Aristokles,后因强壮的身躯和宽广的前额,改名为柏拉图(在希腊语中,Platus一词是“平坦、宽阔”等意思)。家中排行老四。柏拉图是其体育老师给他起的绰号。

他出生于雅典,父母为名门望族之后,从小受到了完备的教育。他早年喜爱文学,写过诗歌和悲剧,并且对政治感兴趣,20岁左右同苏格拉底交往后,醉心于哲学研究。公元前399年,苏格拉底受审并被判死刑,使他对现存的政体完全失望,于是离开雅典到埃及、西西里等地游历,时间长达十多年。

公元前387年柏拉图回到雅典,在城外西北角一座为纪念希腊英雄阿卡德穆而设的花园和运动场附近创立了自己的学校_--学园(或称“阿卡得米”,Academy)。学园的名字与学园的地址有关,学园的校址所在地与希腊的传奇英雄阿卡得摩斯(Academus)有关,因而以此命名。这是西方最早的高等学府,后世的高等学术机构(Academy)也因此而得名,它是中世纪时在西方发展起来的大学的前身。学园存在了900多年,直到公元529年被查士丁尼大帝关闭为止。学园受到毕达哥拉斯的影响较大,课程设置类似于毕达哥拉斯学派的传统课题,包括了算术、几何学、天文学以及声学。

公元前367年,柏拉图再度出游,此时学园已经创立二十多年了。他两次赴西西里岛企图实现政治抱负,并将自己的理念付诸实施,但是却遭到强行放逐,于公元前360年回到雅典,继续在学园讲学、写作。直到公元前347年,柏拉图以80高龄去世。

柏拉图才思敏捷,研究广泛,着述颇丰。以他的名义流传下来的着作有40多篇,另有13封书信。柏拉图的主要哲学思想都是通过对话的形式记载下来的。在柏拉图的对话中,有很多是以苏格拉底之名进行的谈话,因此人们很难区分哪些是苏格拉底的思想,哪些是柏拉图的思想。经过后世一代代学者艰苦细致的考证,其中有24篇和4封书信被确定为真品,主要有:

《苏格拉底的申辩》
《克力同篇》
《理想国》
《巴曼尼得斯篇》
《会饮篇》
《斐多篇》
《斐得若篇》
《美诺篇》
《蒂迈欧篇》
《克里底亚篇》
《普罗泰哥拉篇》
《高尔吉亚篇》
《智者篇》
《政治家篇》
《斐利布斯篇》
《法律篇》
柏拉图的着作大多是用对话体裁写成的,人物性格鲜明,场景生动有趣,语言优美华丽,论证严密细致,内容丰富深刻,达到了哲学与文学、逻辑与修辞的高度统一,不仅在哲学上而且在文学上亦具有极其重要的意义和价值。

⑦ 统计学原理学分和成绩加权平均数如何计算

”数理统计技术“是一门进行现代技术研究的基础科学,常用于大数据的处理。 “加权平均”是一种处置处理“绩效”的科学手段。 “加权平均”的数据来源来自不同途径;各来源的数据在“加权算法”中分占不同比例,依据以上前提所求得的平均分数,即加权平均分数。统计学年学期加权平均分是指——年度分数(有确定来源)和学期分数,加权平均所得的分数——有可能是衡量某一效果的标准。

⑧ 请教统计学比数比(OR)如何计算

实验组的有效/无效跟对照组的有效/无效相比,所得的比值。

⑨ 统计学中,z分布指的是什么

标准正态分布。

英语:Normal distribution),又名高斯分布(英语:Gaussian distribution)、正规分布,是一个非常常见的连续概率分布。正态分布在统计学上十分重要,经常用在自然和社会科学来代表一个不明的随机变量。

正态分布是自然科学与行为科学中的定量现象的一个方便模型。各种各样的心理学测试分数和物理现象比如光子计数都被发现近似地服从正态分布。

尽管这些现象的根本原因经常是未知的,理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一种简单的证明)。

正态分布出现在许多区域统计:例如,采样分布均值是近似地正态的,即使被采样的样本的原始群体分布并不服从正态分布。

另外,正态分布信息熵在所有的已知均值及方差的分布中最大,这使得它作为一种均值以及方差已知的分布的自然选择。正态分布是在统计以及许多统计测试中最广泛应用的一类分布。在概率论,正态分布是几种连续以及离散分布的极限分布。

计算统计应用

在计算机模拟中,经常需要生成正态分布的数值。最基本的一个方法是使用标准的正态累积分布函数的反函数。除此之外还有其他更加高效的方法,Box-Muller变换就是其中之一。另一个更加快捷的方法是ziggurat算法。

下面将介绍这两种方法。一个简单可行的并且容易编程的方法是:求12个在(0,1)上均匀分布的和,然后减6(12的一半)。这种方法可以用在很多应用中。

这12个数的和是Irwin-Hall分布;选择一个方差12。这个随即推导的结果限制在(-6,6)之间,并且密度为12,是用11次多项式估计正态分布。

⑩ 统计学方法有哪些

一、描述统计

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。

集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?

离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。

相关分析:相关分析探讨数据之间是否具有统计学上的关联性。这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括A大B就大(小),A小B就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是A、B变量同时增大这种正相关关系,也可以是A变量增大时B变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。

例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的A、B两列变量)。然后,我们将人口密度排入X轴,将暴力倾向分排入Y轴,获得了一个很有价值的图表,当某典狱长想知道,某囚舍扩建到N人/间囚室,暴力倾向能降低多少。我们可以当前人口密度和改建后人口密度带入相应的回归方程,算出扩建前的预期暴力倾向和扩建后的预期暴力倾向,两数据之差即典狱长想知道的结果。

推论统计:

推论统计是统计学乃至于心理统计学中较为年轻的一部分内容。它以统计结果为依据,来证明或推翻某个命题。具体来说,就是通过分析样本与样本分布的差异,来估算样本与总体、同一样本的前后测成绩差异,样本与样本的成绩差距、总体与总体的成绩差距是否具有显着性差异。例如,我们想研究教育背景是否会影响人的智力测验成绩。可以找100名24岁大学毕业生和100名24岁初中毕业生。采集他们的一些智力测验成绩。用推论统计方法进行数据处理,最后会得出类似这样儿的结论:“研究发现,大学毕业生组的成绩显着高于初中毕业生组的成绩,二者在0.01水平上具有显着性差异,说明大学毕业生的一些智力测验成绩优于中学毕业生组。”

其中,如果用EXCEL 来求描述统计。其方法是:工具-加载宏-勾选"分析工具库",然后关闭Excel然后重新打开,工具菜单就会出现"数据分析"。描述统计是“数据分析”内一个子菜单,在做的时候,记得要把方格输入正确。最好直接点选。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。

二、假设检验

1、参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验 :使用条件:当样本含量n较大时,样本值符合正态分布

2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布

A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;

B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;

B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析

介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。

方法:(1)重测信度法编辑:这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。

(2)复本信度法编辑:让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

(3)折半信度法编辑:折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的。它是由美国社会心理学家李克特于1932年在原有的总加量表基础上改进而成的。该量表由一组陈述组成,每一陈述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五种回答,分别记为5、4、3、2、1,每个被调查者的态度总分就是他对各道题的回答所得分数的加总,这一总分可说明他的态度强弱或他在这一量表上的不同状态。)。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:求出整个量表的信度系数(ru)。

(4)α信度系数法编辑:Cronbach
α信度系数是目前最常用的信度系数,其公式为:

α=(k/(k-1))*(1-(∑Si^2)/ST^2)

其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。

总量表的信度系数最好在0.8以上,0.7-0.8之间可以接受;分量表的信度系数最好在0.7以上,0.6-0.7还可以接受。Cronbach 's alpha系数如果在0.6以下就要考虑重新编问卷。

检査测量的可信度,例如调查问卷的真实性。

分类:

1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

四、列联表分析

列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

简介:一般,若总体中的个体可按两个属性A、B分类,A有r个等级A1,A2,…,Ar,B有c个等级B1,B2,…,Bc,从总体中抽取大小为n的样本,设其中有nij个个体的属性属于等级Ai和Bj,nij称为频数,将r×c个nij排列为一个r行c列的二维列联表,简称r×c表。若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。

列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。

用于分析离散变量或定型变量之间是否存在相关。

列联表分析的基本问题是,判明所考察的各属性之间有无关联,即是否独立。如在前例中,问题是:一个人是否色盲与其性别是否有关?在r×с表中,若以pi、pj和pij分别表示总体中的个体属于等级Ai,属于等级Bj和同时属于Ai、Bj的概率(pi,pj称边缘概率,pij称格概率),“A、B两属性无关联”的假设可以表述为H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知参数pij、pi、pj的最大似然估计(见点估计)分别为行和及列和(统称边缘和)

为样本大小。根据K.皮尔森(1904)的拟合优度检验或似然比检验(见假设检验),当h0成立,且一切pi>0和pj>0时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n称为期望频数。当n足够大,且表中各格的Eij都不太小时,可以据此对h0作检验:若Ⅹ值足够大,就拒绝假设h0,即认为A与B有关联。在前面的色觉问题中,曾按此检验,判定出性别与色觉之间存在某种关联。

需要注意:

若样本大小n不很大,则上述基于渐近分布的方法就不适用。对此,在四格表情形,R.A.费希尔(1935)提出了一种适用于所有n的精确检验法。其思想是在固定各边缘和的条件下,根据超几何分布(见概率分布),可以计算观测频数出现任意一种特定排列的条件概率。把实际出现的观测频数排列,以及比它呈现更多关联迹象的所有可能排列的条件概率都算出来并相加,若所得结果小于给定的显着性水平,则判定所考虑的两个属性存在关联,从而拒绝h0。

对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。

列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

五、相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;

2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;

3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

六、方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。

分类

1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系

2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系

3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系

4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,

七、回归分析

分类:

1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。

2、多元线性回归分析

使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。

1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法

2)横型诊断方法:

A 残差检验: 观测值与估计值的差值要艰从正态分布

B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法

C 共线性诊断:

• 诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例

• 处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等

3、Logistic回归分析

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况

分类:

Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。

4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等

八、聚类分析

聚类与分类的不同在于,聚类所要求划分的类是未知的。

聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。

从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。

聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。

从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。

定义:

依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

聚类分析(cluster
analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析区别于分类分析(classification
analysis) ,后者是有监督的学习。

变量类型:定类变量、定量(离散和连续)变量

样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。

1、性质分类:

Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等

R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等

2、方法分类:

1)系统聚类法:适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类

2)逐步聚类法:适用于大样本的样本聚类

3)其他聚类法:两步聚类、K均值聚类等

九、判别分析

1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体

2、与聚类分析区别

1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本

2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类

3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类

3、进行分类 :

1)Fisher判别分析法 :

以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类,适用于两类判别;

以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于

适用于多类判别。

2)BAYES判别分析法 :

BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;

十、主成分分析

介绍:主成分分析(Principal
Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。

原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。

缺点: 1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。

2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。

十一、因子分析

一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

与主成分分析比较:

相同:都能够起到治理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

用途:

1)减少分析变量个数

2)通过对变量间相关关系探测,将原始变量进行分类

十二、时间序列分析

动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。

主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型

时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。

时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。

时间序列预测法的应用:

系统描述:根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述;

系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;

预测未来:一般用ARMA模型拟合时间序列,预测该时间序列未来值;

决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

特点:

假定事物的过去趋势会延伸到未来;

预测所依据的数据具有不规则性;

撇开了市场发展之间的因果关系。

①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。

时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。

需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。随着市场现象的发展,它还会出现一些新的特点。因此,在时间序列分析预测中,决不能机械地按市场现象过去和现在的规律向外延伸。必须要研究分析市场现象变化的新特点,新表现,并且将这些新特点和新表现充分考虑在预测值内。这样才能对市场现象做出既延续其历史变化规律,又符合其现实表现的可靠的预测结果。

②时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。虽然,预测对象的发展变化是受很多因素影响的。但是,运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。因此,为了求得能反映市场未来发展变化的精确预测值,在运用时间序列分析法进行预测时,必须将量的分析方法和质的分析方法结合起来,从质的方面充分研究各种因素与市场的关系,在充分分析研究影响市场变化的各种因素的基础上确定预测值。

需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。

热点内容
安卓东西怎么往苹果上传 发布:2024-12-27 13:27:36 浏览:129
图片压缩的app 发布:2024-12-27 13:25:35 浏览:106
设置对象存储 发布:2024-12-27 13:25:24 浏览:707
现在玩lol要什么配置 发布:2024-12-27 13:17:30 浏览:224
vs2012添加文件夹 发布:2024-12-27 13:01:27 浏览:899
c语言统计单词数 发布:2024-12-27 12:58:09 浏览:57
手机服务密码怎么知道 发布:2024-12-27 12:51:44 浏览:465
oraclelinux使用 发布:2024-12-27 12:46:04 浏览:481
相册密码在哪里开 发布:2024-12-27 12:40:29 浏览:270
压缩解压支持库 发布:2024-12-27 12:31:46 浏览:712