从头计算法
Ⅰ 目的基因的鉴定方法有哪些
基因的鉴定方法:
间接识别法
在基因的间接识别法(Extrinsic Approach)中,人们利用已知的mRNA或蛋白质序列为线索在DNA序列中搜寻所对应的片段。由给定的mRNA序列确定唯一的作为转录源的DNA序列;而由给定的蛋白质序列,也可以由密码子反转确定一族可能的DNA序列。因此,在线索的提示下搜寻工作相对较为容易,搜寻算法的关键在于提高效率,并能够容忍由于测序不完整或者不精确所带来的误差。BLAST是目前以此为目的最广泛使用的软件之一。
若DNA序列的某一片段与mRNA或蛋白质序列具有高度相似性,这说明该DNA片段极有可能是蛋白编码基因。但是,测定mRNA或蛋白质序列的成本高昂,而且在复杂的生物体中,任意确定的时刻往往只有一部分基因得到了表达。这意味着从任何单个细胞的mRNA和蛋白质上都只能获得一小部分基因的信息;要想得到更为完整的信息,不得不对成百上千个不同状态的细胞中的mRNA和蛋白质测序。这是相当困难的。比如,某些人类基因只在胚胎或胎儿时期才得到表达,对它们的研究就会受到道德因素的制约。
尽管有以上困难,对人类自身和一些常见的实验生物如老鼠和酵母菌,人们已经建立了大量转录和蛋白质序列的数据库。如RefSeq数据库,Ensembl数据库等等。但这些数据库既不完整,也含有相当数量的错误。
从头计算法
鉴于间接识别法的种种缺陷,仅仅由DNA序列信息预测蛋白质编码基因的从头计算法(Ab Initio Approach)就显得十分重要了。一般意义上基因具有两种类型的特征,一类特征是“信号”,由一些特殊的序列构成,通常预示着其周围存在着一个基因;另一类特征是“内容”,即蛋白质编码基因所具有的某些统计学特征。使用Ab Initio方法识别基因又称为基因预测。通常我们仍需借助实验证实预测的DNA片段是否具有生物学功能。
在原核生物中,基因往往具有特定且容易识别的启动子序列(信号),如Pribnow盒和转录因子。与此同时,构成蛋白质编码的序列构成一个连续的开放阅读框(内容),其长度约为数百个到数千个碱基对(依据该长度区间可以筛选合适的密码子)。除此之外,原核生物的蛋白质编码还具有其他一些容易判别的统计学的特征。这使得对原核生物的基因预测能达到相对较高的精度。
对真核生物(尤其是复杂的生物如人类)的基因预测则相当有挑战性。一方面,真核生物中的启动子和其他控制信号更为复杂,还未被很好的了解。两个被真核生物基因搜寻器识别到的讯号例子有CpG islands及poly(A) tail的结合点。
另一方面,由于真核生物所具有的splicing机制,基因中一个蛋白质编码序列被分为了若干段(外显子),中间由非编码序列连接(基因内区)。人类的一个普通蛋白质编码基因可能被分为了十几个外显子,其中每个外显子的长度少于200个碱基对,而某些外显子更可能只有二三十个碱基对长。因而蛋白质编码的一些统计学特征变得难于判别。
高级的基因识别算法常使用更加复杂的概率论模型,如隐马尔可夫模型。Glimmer是一个广泛应用的高级基因识别程序,它对原核生物基因的预测已非常精确,相比之下,对真核生物的预测则效果有限。GENSCAN计划是一个着名的例子。
比较基因组学
由于多个物种的基因组序列已完全测出,使得比较基因组学得以发展,并产生了新的基因识别的方法。该方法基于如下原理:自然选择的力量使得基因和DNA序列上具有生物学功能的其他片段较其他部分有较慢的变异速率,在前者的变异更有可能对生物体的生存产生负面影响,因而难以得到保存。因此,通过比较相关的物种的DNA序列,我们能够取得预测基因的新线索。2003年,通过对若干种酵母基因组的比较,人类对原先的基因识别结果作了较大的修改;类似的方法也正在应用于人类的基因组研究,并可能在将来的若干年内取得成果。
Ⅱ 模型和计算方法
由于物质分子通常包含有不止一个电子,所以求解分子的定态Schrodinger方程时,就会遇到一个难解的多体(J.A.Tossell and D.J.Vaughan,1992;唐敖庆等,1979;江逢霖,1987)问题。量子地球化学吸取了量子化学、理论固体物理学的新成果,使得求解复杂物质的Schrodinger方程成为可能。从1927年Heitler和London首先近似解出氢分子的量子力学方程,到20世纪70年代末,量子化学、理论固体物理学计算方法的研究工作基本完成,80年代计算软件陆续问世,但其计算方法仍是量子化学和理论固体物理学的主要研究领域之一。有关详细的计算方法请参考相关学科的专门着作。在这里仅简要概述有关量子地球化学研究中所涉及的主要计算方法的纲要。
求解Schrodinger定态方程,首先是选择物理模型和适合的计算方法。
物理模型可分为非局域(delocalized)和局域(localized)两大类:前者是将周期性结构的固体作为整体处理,属于无限分子模型,并用离子晶格(点阵)理论和能带理论进行模拟计算;后者则是将结晶固体视为由许多分子簇(molecular clusters)所组成,选择有限的分子簇来代表所研究的矿物的性质,如选取SiO4代表石英模型,为有限分子簇模型。非局域模型主要用于固体物理学的计算中。由于地球化学系统物质的复杂性,量子地球化学主要以局域有限分子簇模型进行计算研究,以减少计算中所处理的电子的个数,简化计算。
在局域有限分子模型下,用以描述电子系统的方法有三大类方法体系,一类为独立电子近似法(Independent Electron Approximation IEA),另一类为局部交换能量法(Xα),第三类为相关波函数法(Correlated Wave Functions,CWF)。在量子地球化学的研究中,独立电子近似法和交换势能法(MS-Xα)应用较广,其精度一般可满足地球化学研究的需要。但对于一些精度要求较高的量子地球化学研究则需采用相关波函数法进行较为精确的计算。
(1)独立电子近似法(IEA)
独立电子近似法是应用鲍林不相容原理,以单个电子波函数的积来替代体系中的多电子波函数,以解决难解的多体问题。它假定每一个电子是在原子核和其他电子的平均电荷密度所产生的势场中运动。在量子力学中,这种单电子的运动状态可由Hartree-Fock方程来描述:
地球化学原理与应用
式中:F为哈密顿算符;ε为单个电子的能量本征值;ψi为描写第i个电子运动状态的波函数。
这样就把一个N电子体系的多体电子问题,简化为若干个单电子Hartree-Fock方程问题。求解单电子Hartree-Fock方程比求解一个N电子的定态Schrodinger方程要容易得多。
在进行了Hartree-Fock近似之后,可根据研究精度的要求而选取求解Schrodinger方程的解的方法,主要有严格、精确的Ab Inito Hartree-Fock法(也称为从头计算法)和简化近似计算方法,如全略微分重叠法(CNDO)和间略微分重叠法(INDO)。
Ab Inito Hartree-Fock计算严格、结果精确,但同时也难解、费时。Ab Inito Hartree-Fock法是首先选取一组波函数作为基组(basis set)来表示这些原子轨道,然后用自洽场(SCF)的方法求解出Schrodinger 方程的解,从而获得描述所研究的物质分子的电子结构的波函数ψ。由从头计算法得到的可直接与实验结果相比较的量,有轨道能量和体系总能量,所以由从头计算法可以直接获得被研究对象的游离电势、分子的平均几何构型、化学反应的势能面以及紫外与可见光谱的谱带位置等。虽然,从头计算法具有计算严格、结果精确的特点,但是,由于从头计算法中有大量的中心积分计算,其计算量大得惊人,难解耗时。因而,在量子地球化学研究中,在不失去基本准确性的情况下,亦谋求一些简化的近似计算方法,如CNDO法和INDO法。
CNDO法是在解方程中作零微分重叠,即只按最简单方式引进电子-电子排斥能,而对两个具有平行或反平行自旋的电子间实际存在的相互作用未予以适当考虑。CNDO法虽然大大地简化了计算,但其所得的结果较为粗糙(J.A.Tossell and D.J.Vaughan,1992)。INDO法是CNDO法的改进方法,其保留了单中心积分中的单原子微分重叠,而略去了其他微分重叠。这样使得 INDO 法既提高了结果的可靠性而又不增加太多的计算工作量。CNDO法和INDO法对只包含轻原子的小分子和大分子计算结果均很成功,但对包含重原子(例如过渡元素、稀有元素)的分子或晶体的计算结果不佳。
(2)局部交换能量法(Xα)
局部交换能量法是定量、半定量地考虑电子的交换作用能的统计平均方法。其计算工作量低于Ab Inito法,高于CNDO方法,以Muffin-Tin平均分子(唐敖庆等,1979;江逢霖,1987)分别求解Schrodinger方程应用较广,也称为MS-Xα法。MS- Xα主要应用于对称性高的分子,计算结果十分令人满意,如
(3)波函数法(CWF)
用相关波函数法求解定态Schrodinger方程,所得的结果在局域(localized)有限分子簇模型计算方法中是精度最高的。主要有组态相互作用(CI)和多体微扰理论(MBPT)。CI是目前计算相关能的主要方法。CI是把波函数按组态展开,而把组态函数按激发程度分类,在具体计算时,由于无法展开到包含很高激发程度的组态函数,三重激发以上的组态函数都被忽略(唐敖庆等,1979;江逢霖,1987)。
Ⅲ 第一性原理通俗解释是什么
是一个最基本的命题或假设,不能被省略或删除,也不能被违反。在物理学中,第一性原理或称从头算,指从基本的物理学定律出发,不外加假设与经验拟合的推导与计算。例如利用薛定谔方程在一些近似方法下解电子结构,但不从实验数据得到拟合参数的从头计算法。
公理逻辑
在传统逻辑中,公理是没有经过证明,但被当作不证自明的一个命题。因此,其真实性被视为是理所当然的,且被当做演绎及推论其他事实的起点。当不断要求证明时,因果关系毕竟不能无限地追溯,而需停止于无需证明的公理。通常公理都很简单,且符合直觉,如“a+b=b+a”。
不同的系统,会预计不同的公理。例如非欧几何的公理,和欧氏几何的公理就有一点不同;另外,集合论的选择公理在许多系统的建构中,也富有争议。
有些系统坚持不预设选择公理。也有一些数学家在建构系统时,刻意排除掉皮亚诺公理中的数学归纳法,以确保所有的证明,都可以直接演算。
在数学中,公理这一词被用于两种相关但相异的意思之下——逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。
和定理不同,一个公理不能被其他公理推导出来,否则它就不是起点本身,而是能够从起点得出的某种结果—可以干脆被归为定理了。
Ⅳ 基于分子轨道理论的从头算法,在物理模型上有哪些近似
分子轨道理论是和以杂化轨道理论为代表的旧价键理论有很大不同的。旧价键理论认为分子中不同的原子形成共价键而结合在一起,靠的是两个原子被单电子占据的原子轨道的重叠,从而电子配对相互作用结合在一起;而分子轨道理论对于分子的成键作用是和旧价键理论明显不同的,我们知道分子中不同原子形成共价键会使体系能量降低,分子轨道理论认为分子中存在成键轨道和反键轨道,成键轨道能量比原子轨道低,反键轨道能量比原子轨道高,但是电子是从能量低的成键轨道填起的,因此最终成键电子数多于反键电子数,使体系能量比原子态下降,即成键了。总之,你要把握住分子轨道理论的最大要点,他不将成键作用视为单电子的配对;由于形成化学键体系能量要降低,分子轨道理论就是基于此将成键作用视为电子填在能量低的成键轨道,使体系能量降低而成键,这就是分子轨道理论的最大要点,所以,像某些有单电子的化合物它们的分子轨道能级图会出现被单电子占据的分子轨道,因为分子轨道理论不要求电子配对。
Ⅳ 量子化学计算方法的从头计算法
原则上讲,有了HFR方程(不论是RHF方程或是UHF方程),就可以计算任何多原子体系的电子结构和性质真正严格的计算称之为从头计算法。RHF方程的极限能量与非相对论薛定谔方程的严格解之差称为相关能。对于某些目的,还需要考虑体系的相关能。UHF方程考虑了相关能的一小部分,更精密的作法则须取多斯莱特行列式的线性组合形式的波函数,由变分法求得这些斯莱特行列式的组合系数。这些由一个斯莱特行列式或数个斯莱特行列式按某种方式组合所描述的分子的电子结构称为组态,所以这种取多斯莱特行列式波函数的方法称为组态相互作用法(简称CI)。
Ⅵ 第一性原理方法又称从头计算方法,是基于什么原理建立起来的
第一性原理:不建立理论模型,只基于最基本的力学,用计算机去让这个体系基本力学去演化,相当于一次实验
“第一性原理”来源于“第一推动力”这个宗教词汇,第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作用下保持静止或匀速直线运动。
如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致力于神学研究。现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。所有这些说不清的东西,都归结为宇宙“第一推动力”问题,它可能由某种原理决定,这个原理可以称为“第一性原理”,可惜这是当时科学水平所不能及的。现在也远没有答案。
打个比方,在人文领域中,一个国家,其出发点一定是每个公民都觉得不言而喻的公理,科学的方法可用于治国,让建国也基于最简单的公理,公民能理解,国家才会牢固。
简单的说,再复杂的知识体系,一定要归纳成最简单的几条不言而喻的公里,这就是第一性原理。
中国邻里团 “回家么”的创始人王雨豪是崇尚第一性原理的创业者,习惯用第一性原理思考问题,在几次演讲中均有提到和介绍第一性原理,且涉及各个领域。
Ⅶ 怎么确定物质的分子构型和杂化类型
根据价层电子对互斥理论进行推断
ABn型:A周围的电子对数就是轨道数,按 s p d 顺序取相应的轨道数杂化即可。
sp杂化:直线
sp2杂化:平面三角
sp3杂化:正四面体
sp3d杂化:三棱双锥
sp3d2杂化:正八面体
Ⅷ 量子化学的计算方法
主要分为:①分子轨道法(简称MO法,见分子轨道理论);②价键法(简称VB法,见价键理论)。以下只介绍分子轨道法,它是原子轨道对分子的推广,即在物理模型中,假定分子中的每个电子在所有原子核和电子所产生的平均势场中运动,即每个电子可由一个单电子函数(电子的坐标的函数)来表示它的运动状态,并称这个单电子函数为分子轨道,而整个分子的运动状态则由分子所有的电子的分子轨道组成(乘积的线性组合),这就是分子轨道法名称的由来。 开壳层体系是指体系中有未成对的电子(即有的壳层未充满)。描述开壳层体系的波函数一般应取斯莱特行列式的线性组合,这样,计算方案就将很复杂。然而对于开壳层体系的对应极大多重度(所谓多重度,指一个分子因总自旋角动量的不同而具有几个能量相重的状态)的状态(即自旋角动量最大的状态)来说,可以保持波函数的单斯莱特行列式形式(近似方法)。描述这类体系的最常用的方法是假设自旋向上的电子(自旋)和自旋向下的电子(β自旋)所处的分子轨道不同,即不限制自旋相反的同一对电子填入相同的分子轨道。这样得到的HFR方程称为非限制性的HFR方程,简称UHF方程。
原则上讲,有了HFR方程(不论是RHF方程或是UHF方程),就可以计算任何多原子体系的电子结构和性质真正严格的计算称之为从头计算法。RHF方程的极限能量与非相对论薛定谔方程的严格解之差称为相关能。对于某些目的,还需要考虑体系的相关能。UHF方程考虑了相关能的一小部分,更精密的作法则须取多斯莱特行列式的线性组合形式的波函数,由变分法求得这些斯莱特行列式的组合系数。这些由一个斯莱特行列式或数个斯莱特行列式按某种方式组合所描述的分子的电子结构称为组态,所以这种取多斯莱特行列式波函数的方法称为组态相互作用法(简称CI)。
Ⅸ 高中化学的问题
水分子的键角是104.5度,因为水分子中氧周围有两对孤电子,有挤压作用,造成键角小于109度。
Ⅹ 成键电子数怎么算
键级又称键序,是分子轨道法中表示相邻的两个原子成键强度的一种数值。对双原子分子来说,把成键电子数与反键电子数的差值的一半,称为键级。在形成共价键时,成键轨道上的电子称为成键电子,它使体系的能量降低,有利于形成稳定的键;反键轨道上的电子称作反键电子,它使体系的能量升高,不利于形成稳定的键。可见,键级是衡量化学键相对强弱的参数,键级愈大,键愈稳定,若键级为零,则不能成键。 [1]
中文名键级外文名bond order别 名键序学 科物理、化学同类名词键长、键能、键矩研 究原子
目录
1 简介
2 键级定义式
3 键级计算
▪ 分子轨道法
▪ 电子空位对假说
▪ 休克尔分子轨道法
简介
编辑
在量子力学的范畴内,键级是难以观测的,因此,无法用唯一的方法来给它下定义。然而,对于化学家来说,键级是一种非常有用的模型。
多原子分子的键级定义首先是由柯尔逊(Coulsoll)提出来的,他以休克尔分子轨道理论(HMO)为背景,几乎在每一种量子化学标准教科书中,都有HMO理论的详细阐述。可是,在皮拉(iPlar)的科效书中,关于键级的讨论却独树一帜,采用了别致的原子轨道线性组合分子轨道(LCAO一MO)的矩阵公式.
科尔逊关于键级的定义,只有当假定原子轨道(AO)是相互正交的以及被考虑的每个原子仅供一个原子轨道时方可应用。这些近似通常来自休克尔和帕里瑟一帕尔一波普尔(pariser一parr一poPle)的 JI 一电子理论。魏伯格(vitberg)第一个提出了不包括JI 一电子的键级定义,他采用键指标(bondindex)来代替键级(bondorder)。以这些先驱的工作为基础,阿姆斯特朗(Armstrong)等人提出了分子中原子的化合价的定义。可是,这些键级和化合价的定义都局限于原子轨道的正交归一集一合之中。在从头计算法(abiniito)或者在以扩展休克尔理论(EHMO)为基础的那些方法中,将不必假定原子轨道的正交性,即考虑原子轨道间的重迭现象。迈耶(Mayer)提出了非正交基集情况下,键级的近似定义。迈耶的键级和化合价定义是以密立根(Mulilke)n布居分析法为基础的 [2]
键级定义式
编辑
在现代化学领域中,键级是一个很有用的模型。键级的定义首先是Coulson 在Huckel的MO理论中给出的,随后根据理论的发展,已有几种键级的定义,各作者提出的键级定义式分别是:
Coulson键级:PAB=
;
Wiberg键级:WAB=
;
Mulliken键级:MAB=
;
Mayer键级:BAB=
;
对闭壳层体系,(2)~(4)式中的阵
,其矩阵元
。 [3]
键级计算
编辑
分子轨道法
传统的分子轨道理论(简写为MO)认为,双原子分子在形成分子的过程中,各个原子的原子轨道按照成键三原则组合成分子轨道,比其原子轨道能量低的分子轨道称为成键轨道(J);能量高于其原子轨道的分子轨道称为反键轨道(J* );与其能量相近的分子轨道称为非键轨道。排布在这三种分子轨道上的电子相应称为成键电子、反键电子和非键电子。成键电子数减去反键电子数即为净成键电子数。键级的定义可记作:
键级=(成键电子数-反键电子数)/2
计算分子的键级,可采用原子轨道线性组合为分子轨道法,即:
(1)写出单电子薛定谔方程;
(2)按照成键三原则,用原子轨道线性组合为分子轨道法选择试探性变分函数;
(3)应用变分法建立久期方程及久期行列式并确定能量;
(4)求系数确定体系的状态;
(5)按能量的高低,画出能级图;
(6)按能量最低原则,泡利不相容原理和洪特规则在分子轨道中填充电子;
(7)求出成键轨道和反键轨道的电子数,代入公式计算键级。
电子空位对假说
电子空位对假说(简写为EO)认为,分子中原子通过得失与交换电子而键合起来,对此电子和空位同样起着重要的作用和影响。电子少空位多交换效益并不高;反之,电子多而空位少,实际交换效益也不高。最好是电子数和空位数尽量靠拢,成双结对,称为电子空位对,这种电子空位对数越多,成键数目就越多,成键能力也就越强。从中可看出,电子空位对数实质上就是净成键电子数。
分子中各原子最大限度地调动价轨道中电子和空位的共同作用,尽可能多地组成电子空位对,这是各种类型共价分子结构的共同规律。