当前位置:首页 » 操作系统 » 分类算法分类

分类算法分类

发布时间: 2022-04-24 16:31:19

‘壹’ 用于数据挖掘的分类算法有哪些,各有何优劣

1、朴素贝叶斯(Naive Bayes, NB)

简单,就像做一些数数的工作。

如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。

如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试.


2.Logistic回归(Logistic Regression, LR)

LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。

如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的.


3.决策树(Decision Tree, DT)

DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,DT可以轻松的处理这种情况:属于A类的样本的特征x取值往往非常小或者非常大,而属于B类的样本的特征x取值在中间范围)。

DT的主要缺点是容易过拟合,这也正是随机森林(Random Forest, RF)(或者Boosted树)等集成学习算法被提出来的原因。

此外,RF在很多分类问题中经常表现得最好,且速度快可扩展,也不像SVM那样需要调整大量的参数,所以最近RF是一个非常流行的算法.


4.支持向量机(Support Vector Machine, SVM)

很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。

SVM在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为RF已经开始威胁其地位了.

‘贰’ 算法有哪些分类

算法分类编辑算法可大致分为:

基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

‘叁’ 算法有哪些分类

算法分类编辑算法可大致分为:

基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

‘肆’ 常见决策树分类算法都有哪些

在机器学习中,有一个体系叫做决策树,决策树能够解决很多问题。在决策树中,也有很多需要我们去学习的算法,要知道,在决策树中,每一个算法都是实用的算法,所以了解决策树中的算法对我们是有很大的帮助的。在这篇文章中我们就给大家介绍一下关于决策树分类的算法,希望能够帮助大家更好地去理解决策树。
1.C4.5算法
C4.5算法就是基于ID3算法的改进,这种算法主要包括的内容就是使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了树的过度拟合情况;可以对不完整属性和连续型数据进行处理;使用k交叉验证降低了计算复杂度;针对数据构成形式,提升了算法的普适性等内容,这种算法是一个十分使用的算法。
2.CLS算法
CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。
3.ID3算法
ID3算法就是对CLS算法的最大改进是摒弃了属性选择的随机性,利用信息熵的下降速度作为属性选择的度量。ID3是一种基于信息熵的决策树分类学习算法,以信息增益和信息熵,作为对象分类的衡量标准。ID3算法结构简单、学习能力强、分类速度快适合大规模数据分类。但同时由于信息增益的不稳定性,容易倾向于众数属性导致过度拟合,算法抗干扰能力差。
3.1.ID3算法的优缺点
ID3算法的优点就是方法简单、计算量小、理论清晰、学习能力较强、比较适用于处理规模较大的学习问题。缺点就是倾向于选择那些属性取值比较多的属性,在实际的应用中往往取值比较多的属性对分类没有太大价值、不能对连续属性进行处理、对噪声数据比较敏感、需计算每一个属性的信息增益值、计算代价较高。
3.2.ID3算法的核心思想
根据样本子集属性取值的信息增益值的大小来选择决策属性,并根据该属性的不同取值生成决策树的分支,再对子集进行递归调用该方法,当所有子集的数据都只包含于同一个类别时结束。最后,根据生成的决策树模型,对新的、未知类别的数据对象进行分类。
在这篇文章中我们给大家介绍了决策树分类算法的具体内容,包括有很多种算法。从中我们不难发现决策树的算法都是经过不不断的改造趋于成熟的。所以说,机器学习的发展在某种程度上就是由于这些算法的进步而来的。

‘伍’ 文本自动分类算法有哪些呢

文本自动分类算法主要有朴素贝叶斯分类算法、支持向量机分类算法、KNN算法和决策树算法。
朴素贝叶斯分类算法主要是利用文本中词的特征项和类别的组合概率来估算文本属于哪个类别的概率。
支持向量机分类算分主要是采用特征提取技术把文本信息转换为词向量,然后用词向量与训练好的类别数据进行相似度计算。
KNN算法是在训练集中找到离它最近的k个文本,并根据这些文本的分类来预测待分类文本属于哪一个类别。
决策树算法是首先建立一个基于树的预测模型,根据预测模型来对文本进行预测分类。

‘陆’ 什么是分类算法

分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签来区分归类。

分类是事先定义好类别 ,类别数不变 。分类器需要由人工标注的分类训练语料训练得到,属于有指导学习范畴。

最常用的分类算法就是贝叶斯分类算法,(贝叶斯分类器)
用到的知识就是概率的东西

谢谢采纳

‘柒’ 分类算法是什么

分类算法是在数学和计算机科学之中,算法为一个计算的具体步骤,常用于计算、数据处理和自动推理。

精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数,算法分类可以根据算法设计原理、算法的具体应用和其他一些特性进行分类。



具体意义:

如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

‘捌’ python分类算法有哪些

常见的分类算法有:

  • K近邻算法

  • 决策树

  • 朴素贝叶斯

  • SVM

  • Logistic Regression

‘玖’ 常见的分类算法有哪些

决策树 贝叶斯 人工神经网络 k-近邻 支持向量机 基于关联规则的分类 集成学习

热点内容
hp存储扩容 发布:2024-11-17 23:29:16 浏览:569
在ftp中put表示什么 发布:2024-11-17 23:29:12 浏览:383
mvc多文件上传 发布:2024-11-17 23:13:56 浏览:155
玩游戏硬盘缓存32m 发布:2024-11-17 23:03:42 浏览:525
蓝光存储系统 发布:2024-11-17 23:03:41 浏览:436
地平线4提示配置低于最低怎么办 发布:2024-11-17 22:54:38 浏览:610
注册银行卡账户密码填什么 发布:2024-11-17 22:54:35 浏览:537
java压缩上传图片 发布:2024-11-17 22:26:59 浏览:627
plc编程课件 发布:2024-11-17 22:18:23 浏览:469
我的世界服务器信号一直在检测 发布:2024-11-17 22:09:52 浏览:547