当前位置:首页 » 操作系统 » 动态拟合算法

动态拟合算法

发布时间: 2022-04-23 12:55:47

❶ MATLAB建模方法有哪些

首先,Matlab是一个工具,它不是一个方法。

其次,我给你推荐一本书
《MATLAB 在数学建模中的应用(第2版)》

然后它的目录可以回答你的问题:
第1章 数学建模常规方法及其MATLAB实现
1.1 MATLAB与数据文件的交互
1.1.1 MATLAB与Excel的交互
1.1.2 MATLAB与TXT交互
1.1.3 MATLAB界面导入数据的方法
1.2 数据拟合方法
1.2.1 多项式拟合
1.2.2 指定函数拟合
1.2.3 曲线拟合工具箱
1.3 数据拟合应用实例
1.3.1 人口预测模型
1.3.2 薄膜渗透率的测定
1.4 数据的可视化
1.4.1 地形地貌图形的绘制
1.4.2 车灯光源投影区域的绘制(CUMCM2002A)
1.5 层次分析法(AHP)
1.5.1 层次分析法的应用场景
1.5.2 AHPMATLAB程序设计

第2章 规划问题的MATLAB求解
2.1 线性规划
2.1.1 线性规划的实例与定义
2.1.2 线性规划的MATLAB标准形式
2.1.3 线性规划问题解的概念
2.1.4 求解线性规划的MATLAB解法
2.2 非线性规划
2.2.1 非线性规划的实例与定义
2.2.2 非线性规划的MATLAB解法
2.2.3 二次规划
2.3 整数规划
2.3.1 整数规划的定义
2.3.2 01整数规划
2.3.3 随机取样计算法

第3章 数据建模及MATLAB实现
3.1 云模型
3.1.1 云模型基础知识
3.1.2 云模型的MATLAB程序设计
3.2 Logistic回归
3.2.1 Logistic模型
3.2.2 Logistic回归MATLAB程序设计
3.3 主成分分析
3.3.1 PCA基本思想
3.3.2 PCA步骤
3.3.3 主成分分析MATLAB程序设计
3.4 支持向量机(SVM)
3.4.1 SVM基本思想
3.4.2 理论基础
3.4.3 支持向量机MATLAB程序设计
3.5 K均值(KMeans)
3.5.1 KMeans原理、步骤和特点
3.5.2 KMeans聚类MATLAB程序设计
3.6 朴素贝叶斯判别法
3.6.1 朴素贝叶斯判别模型
3.6.2 朴素贝叶斯判别法MATLAB设计
3.7 数据建模综合应用
参考文献

第4章 灰色预测及其MATLAB实现
4.1 灰色系统基本理论
4.1.1 灰色关联度矩阵
4.1.2 经典灰色模型GM(1,1)
4.1.3 灰色Verhulst模型
4.2 灰色系统的程序设计
4.2.1 灰色关联度矩阵的程序设计
4.2.2 GM(1,1)的程序设计
4.2.3 灰色Verhulst模型的程序设计
4.3 灰色预测的MATLAB程序
4.3.1 典型程序结构
4.3.2 灰色预测程序说明
4.4 灰色预测应用实例
4.4.1 实例一长江水质的预测(CUMCM2005A)
4.4.2 实例二预测与会代表人数(CUMCM2009D)
4.5 小结
参考文献

第5章 遗传算法及其MATLAB实现
5.1 遗传算法基本原理
5.1.1 人工智能算法概述
5.1.2 遗传算法生物学基础
5.1.3 遗传算法的实现步骤
5.1.4 遗传算法的拓展
5.2 遗传算法的MATLAB程序设计
5.2.1 程序设计流程及参数选取
5.2.2 MATLAB遗传算法工具箱
5.3 遗传算法应用案例
5.3.1 案例一:无约束目标函数最大值遗传算法求解策略
5.3.2 案例二:CUMCM中多约束非线性规划问题的求解
5.3.3 案例三:BEATbx遗传算法工具箱的应用——电子商务中转化率影响因素研究
参考文献

第6章 模拟退火算法及其MATLAB实现
6.1 算法的基本理论
6.1.1 算法概述
6.1.2 基本思想
6.1.3 其他一些参数的说明
6.1.4 算法基本步骤
6.1.5 几点说明
6.2 算法的MATLAB实现
6.2.1 算法设计步骤
6.2.2 典型程序结构
6.3 应用实例:背包问题的求解
6.3.1 问题的描述
6.3.2 问题的求解
6.4 模拟退火程序包ASA简介
6.4.1 ASA的优化实例
6.4.2 ASA的编译
6.4.3 MATLAB版ASA的安装与使用
6.5 小结
6.6 延伸阅读
参考文献

第7章 人工神经网络及其MATLAB实现
7.1 人工神经网络基本理论
7.1.1 人工神经网络模型拓扑结构
7.1.2 常用激励函数
7.1.3 常见神经网络理论
7.2 BP神经网络的结构设计
7.2.1 鲨鱼嗅闻血腥味与BP神经网络训练
7.2.2 透视神经网络的学习步骤
7.2.3 BP神经网络的动态拟合过程
7.3 RBF神经网络的结构设计
7.3.1 梯度训练法RBF神经网络的结构设计
7.3.2 RBF神经网络的性能
7.4 应用实例
7.4.1 基于MATLAB源程序公路运量预测
7.4.2 基于MATLAB工具箱公路运量预测
7.4.3 艾滋病治疗最佳停药时间的确定(CUMCM2006B)
7.4.4 RBF神经网络预测新客户流失概率
7.5 延伸阅读
7.5.1 从金融分析中的小数定理谈神经网络的训练样本遴选规则
7.5.2 小议BP神经网络的衍生机理
参考文献

第8章粒子群算法及其MATLAB实现
8.1 PSO算法相关知识
8.1.1 初识PSO算法
8.1.2 PSO算法的基本理论
8.1.3 PSO算法的约束优化
8.1.4 PSO算法的优缺点
8.2 PSO算法程序设计
8.2.1 程序设计流程
8.2.2 PSO算法的参数选取
8.2.3 PSO算法MATLAB源程序范例
8.3 应用案例:基于PSO算法和BP算法训练神经网络
8.3.1 如何评价网络的性能
8.3.2 BP算法能够搜索到极值的原理
8.3.3 PSOBP神经网络的设计指导原则
8.3.4 PSO算法优化神经网络结构
8.3.5 PSOBP神经网络的实现
参考文献

第9章 蚁群算法及其MATLAB实现
9.1 蚁群算法原理
9.1.1 蚁群算法基本思想
9.1.2 蚁群算法数学模型
9.1.3 蚁群算法流程
9.2 蚁群算法的MATLAB实现
9.2.1 实例背景
9.2.2 算法设计步骤
9.2.3 MATLAB程序实现
9.2.4 程序执行结果与分析
9.3 算法关键参数的设定
9.3.1 参数设定的准则
9.3.2 蚂蚁数量
9.3.3 信息素因子
9.3.4 启发函数因子
9.3.5 信息素挥发因子
9.3.6 信息素常数
9.3.7 最大迭代次数
9.3.8 组合参数设计策略
9.4 应用实例:最佳旅游方案(苏北赛2011B)
9.4.1 问题描述
9.4.2 问题的求解和结果
9.5 本章小结
参考文献

第10章 小波分析及其MATLAB实现
10.1 小波分析基本理论
10.1.1 傅里叶变换的局限性
10.1.2 伸缩平移和小波变换
10.1.3 小波变换入门和多尺度分析
10.1.4 小波窗函数自适应分析
10.2 小波分析MATLAB程序设计
10.2.1 小波分析工具箱函数指令
10.2.2 小波分析程序设计综合案例
10.3 小波分析应用案例
10.3.1 案例一:融合拓扑结构的小波神经网络
10.3.2 案例二:血管重建引出的图像数字水印
参考文献

第11章 计算机虚拟及其MATLAB实现
11.1 计算机虚拟基本知识
11.1.1 从3G移动互联网协议WCDMA谈MATLAB虚拟
11.1.2 计算机虚拟与数学建模
11.1.3 数值模拟与经济效益博弈
11.2 数值模拟MATLAB程序设计
11.2.1 微分方程组模拟
11.2.2 服从概率分布的随机模拟
11.2.3 蒙特卡罗模拟
11.3 动态仿真MATLAB程序设计
11.3.1 MATLAB音频处理
11.3.2 MATLAB常规动画实现
11.4 应用案例:四维水质模型
11.4.1 问题的提出
11.4.2 问题的分析
11.4.3 四维水质模型准备
11.4.4 条件假设与符号约定
11.4.5 四维水质模型的组建
11.4.6 模型求解
11.4.7 计算机模拟情境
参考文献

下篇 真题演习
第12章 彩票中的数学(CUMCM2002B)
12.1 问题的提出
12.2 模型的建立
12.2.1 模型假设与符号说明
12.2.2 模型的准备
12.2.3 模型的建立
12.3 模型的求解
12.3.1 求解的思路
12.3.2 MATLAB程序
12.3.3 程序结果
12.4 技巧点评
参考文献

第13章 露天矿卡车调度问题(CUMCM2003B)
13.1 问题的提出
13.2 基本假设与符号说明
13.2.1 基本假设
13.2.2 符号说明
13.3 问题分析及模型准备
13.4 原则①:数学模型(模型1)的建立与求解
13.4.1 模型的建立
13.4.2 模型求解
13.5 原则②:数学模型(模型2)的建立与求解
13.6 技巧点评
参考文献

第14章 奥运会商圈规划问题(CUMCM2004A)
14.1 问题的描述
14.2 基本假设、名词约定及符号说明
14.2.1 基本假设
14.2.2 符号说明
14.2.3 名词约定
14.3 问题分析与模型准备
14.3.1 基本思路
14.3.2 基本数学表达式的构建
14.4 设置MS网点数学模型的建立与求解
14.4.1 模型建立
14.4.2 模型求解
14.5 设置MS网点理论体系的建立
14.6 商区布局规划的数学模型
14.6.1 模型建立
14.6.2 模型求解
14.7 模型的评价及使用说明
14.7.1 模型的优点
14.7.2 模型的缺点
14.8 技巧点评
参考文献

第15章 交巡警服务平台的设置与调度(CUMCM2011B)
15.1 问题的提出
15.2 问题的分析
15.3 基本假设
15.4 问题1模型的建立与求解
15.4.1 交巡警服务平台管辖范围分配
15.4.2 交巡警的调度
15.4.3 最佳新增服务平台设置
15.5 问题2模型的建立和求解
15.5.1 全市服务平台的合理性分析问题的模型与求解
15.5.2 搜捕嫌疑犯实例的模型与求解
15.6 模型的评价与改进
15.6.1 模型优点
15.6.2 模型缺点
15.7 技巧点评
参考文献

第16章 葡萄酒的评价(CUMCM2012A)
16.1 问题的提出
16.2 基本假设
16.3 问题①模型的建立和求解
16.3.1 问题①的分析
16.3.2 模型的建立和求解
16.4 问题②模型的建立和求解
16.4.1 问题②的基本假设和分析
16.4.2 模型的建立和求解
16.5 问题③模型的建立和求解
16.5.1 问题③的分析
16.5.2 模型的建立和求解
16.6 问题④模型的建立和求解
16.6.1 问题④的分析
16.6.2 模型的建立和求解
16.7 论文点评
参考文献
附件数学建模参赛经验
一、如何准备数学建模竞赛
二、数学建模队员应该如何学习MATLAB
三、如何在数学建模竞赛中取得好成绩
四、数学建模竞赛中的项目管理和时间管理
五、一种非常实用的数学建模方法——目标建模法

❷ 模态分析中六种频域拟合方法具体是什么啊

频域参数识别何止六种方法。
单自由度法:峰值检测、振型检测、圆拟合;实模态复模态均可。
多自由度频域法:最小二乘频域法(LSFD),结构系统参数识别(ISSPA),正交多项式法(OP),频域直接参数识别(FDPI),复模态指示函数法(CMIF),同时频域法(SFD),还有PolyMAX(LMS独创的算法)。
具体方法只能看书去学,一言难尽。
复模态和实模态:
极点应该知道吧,对于比例阻尼的情况,解出来的极点是个纯虚数,不含实部,因此总可以换算成实值的模态振型,这就是实模态,或者叫纯模态;
相应的,非比例阻尼的情况下,极点是个包含实部不为零的复数,因此解出来的振型也是复值模态振型向量。
单自由度法:一般而言,系统的动态响应是各阶模态的叠加;但是,如果在给定的频段内只有一个模态是重要的,那么该模态的参数就可以单独确定,这就是单自由度法。

❸ 数据拟合算法

解:设一共有n个方程,第i个方程形如aiX1+biX2=ci,其中ai,bi,ci是已知数
设di(x1,x2)=(ci-aix1-bix2)(ci-aix1-bix2)
设D= d1+d2+...dn
原问题就是求D的极小值,分别求D关于x1和x2的偏导数,得

Dx1=2a1(a1x1+b1x2-c1)+2a2(a2x1+b2x2-c2)+...2an(anx1+bnx2-cn)
Dx2=2b1(a1x1+b1x2-c1)+2b2(a2x1+b2x2-c2)+...2bn(anx1+bnx2-cn)
极小值处偏导数等于0,所以令Dx1=0,Dx2=0建立方程组,解得
x1=(F*B-G*E)/(A*B-E*E)
x2=(G*A-F*E)/(A*B-E*E)
其中F=a1c1+a2c2+...+ancn
G=b1c1+b2c2+...+bncn
E=a1b1+a2b2+...+anbn
A=a1a1+a2a2+...+anan
B=b1b1+b2b2+...+bnbn
具体数据这里就不算了,用excel把公式打进去就可以算,另外excel本身就带拟合功能

❹ excel曲线拟合采用的算法

最小二乘法是一种数学方法,用于曲线拟合.二乘,就是平方,是早年翻译的沿用.
当在实验中获得自变量与因变量的一系列对应数据,(x1,y1),(x2,y2),(x3,y3),...(xn,yn)时,要找出一个已知类型的函数,y=f(x) ,与之拟合,使得实际数据和理论曲线的离差平方和:∑[yi-f(xi)]^2(从i=1到i=n相加)为最小.
这种求f(x)的方法,叫做最小二乘法。
求得的函数y=f(x)常称为经验公式,在工程技术和科学研究的数据处理中广泛使用.最普遍的是直线(一次曲线)拟合,在现代质量管理上,对散布图的相关分析上也用此法.
是否可以解决您的问题?

❺ 如何根据一组数据进行曲线拟合

您好,这样的:一、
单一变量的曲线逼近
matlab有一个功能强大的曲线拟合工具箱
cftool
,使用方便,能实现多种类型的线性、非线
性曲线拟合。下面结合我使用的
matlab
r2007b
来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是
y=a*x*x
+
b*x,
且a>0,b>0

1、在命令行输入数据:
》x=[110.3323
148.7328
178.064
202.8258033
224.7105
244.5711
262.908
280.0447
296.204
311.5475]
》y=[5
10
15
20
25
30
35
40
45
50]
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“curve
fitting
tool”
(1)点击“data”按钮,弹出“data”窗口;
(2)利用x
data和y
data的下拉菜单读入数据x,y,可修改数据集名“data
set
name”,然
后点击“create
data
set”按钮,退出“data”窗口,返回工具箱界面,这时会自动画出数
据集的曲线图;
(3)点击“fitting”按钮,弹出“fitting”窗口;
(4)点击“new
fit”按钮,可修改拟合项目名称“fit
name”,通过“data
set”下拉菜单
选择数据集,然后通过下拉菜单“type
of
fit”选择拟合曲线的类型,工具箱提供的拟合类
型有:
custom
equations:用户自定义的函数类型
exponential:指数逼近,有2种类型,
a*exp(b*x)

a*exp(b*x)
+
c*exp(d*x)
fourier:傅立叶逼近,有7种类型,基础型是
a0
+
a1*cos(x*w)
+
b1*sin(x*w)
gaussian:高斯逼近,有8种类型,基础型是
a1*exp(-((x-b1)/c1)^2)
interpolant:插值逼近,有4种类型,linear、nearest
neighbor、cubic
spline、shape-
preserving
polynomial:多形式逼近,有9种类型,linear
~、quadratic
~、cubic
~、4-9th
degree
~
power:幂逼近,有2种类型,a*x^b
、a*x^b
+
c
rational:有理数逼近,分子、分母共有的类型是linear
~、quadratic
~、cubic
~、4-5th
degree
~;此外,分子还包括constant型
smoothing
spline:平滑逼近(翻译的不大恰当,不好意思)
sum
of
sin
functions:正弦曲线逼近,有8种类型,基础型是
a1*sin(b1*x
+
c1)
weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“fit
options”按钮,设置拟合算法、修改
待估计参数的上下限等参数;
——如果选custom
equations,点击“new”按钮,弹出自定义函数等式窗口,有“linear
equations线性等式”和“general
equations构造等式”两种标签。
在本例中选custom
equations,点击“new”按钮,选择“general
equations”标签,输入函
数类型y=a*x*x
+
b*x,设置参数a、b的上下限,然后点击ok。

❻ 怎么用matlab进行非线性的多元函数拟合

方法一:

1、最常用的是多项式拟合,采用polyfit函数,在命令窗口输入自变量x和因变量y。

❼ 曲线拟合算法的意义和价值

就是预测。对于数目较大的、自然发展的、没有剧烈变动的事物进行预测,把握事物发展方向。

比如说10年之后,中国人口有多少亿,就需要拟合。

比如有一个多项式函数【函数就是一条曲线】s=f(t);

t= 1 , 2 , 3 , 4 , 5 ,7 ,9
s=2.01 ,5.97,12.02,19.99,30.01 ,? ,90.03

估计t=7 时 s=?;

呵呵,碰到这一类问题,似乎数据之间没有任何规律,所以无从下手。怎么办呢?

咱们就“无中生有”,弄出来一个函数表达式s=f(t),就能解决问题。
对于数据进行曲线拟合得到s=n*(n+1),这样t=7时,s=56.00。拟合的意义就在于此。

热点内容
反编译连接数据库 发布:2025-01-19 22:07:55 浏览:786
贵州省发票软件服务器地址 发布:2025-01-19 22:00:12 浏览:694
linux的单用户模式 发布:2025-01-19 21:55:29 浏览:425
android型号 发布:2025-01-19 21:48:14 浏览:337
供应外置存储阵列柜 发布:2025-01-19 21:32:41 浏览:999
柴火压缩机 发布:2025-01-19 21:20:53 浏览:624
途观5053匹配密码在哪里 发布:2025-01-19 21:19:58 浏览:352
晶锐买哪个配置 发布:2025-01-19 21:19:52 浏览:329
vpn如何访问服务器 发布:2025-01-19 21:09:31 浏览:496
如何测试电视的配置 发布:2025-01-19 21:00:48 浏览:610