当前位置:首页 » 操作系统 » 分治算法球队

分治算法球队

发布时间: 2022-04-22 20:20:56

A. 如何理解分治算法及相关例题

算法步骤:
1 :从左上角起,给棋盘编号(1,1),(1,2)(8,8),计为集合qp。tracks记录走过的每个点. (可以想象为坐标(x,y))

2:设起点为(1,1),记为 当前位置 cp,

3:搜索所有可走的下一步,根据“马行日”的走步规则,可行的点的坐标是x坐标加减1,y坐标加减2,

或是x加减2,y加减1; (例如起点(1,1),可计算出(1+1,1+2),(1+1,1-2),(1-1,1+2),(1-1,1-2),(1+2,1+1),(1+2,1-1),(1-2,1+1),(1-2,1-1) 共8个点), 如果没有搜到可行点,程序结束。

4:判断计算出的点是否在棋盘内,即是否在集合qp中;判断点是否已经走过,即是否在集合tracts中,不在才是合法的点。(在上面的举例起点(1,1),则合法的下一步是(2,3)和 (3,2))

5:将前一步的位置记录到集合tracts中,即tracts.add(cp);选择一个可行点,cp=所选择点的坐标。

6:如果tracts里的点个数等于63,退出程序,否则回到步骤3继续执行。

B. 分治法的步骤

分治法在每一层递归上都有三个步骤:
分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,...,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,...,yk) △ 合并子问题
7. return(T)
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,...,Pk的相应的解y1,y2,...,yk合并为P的解。
根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?
各个子问题的规模应该怎样才为适当?
答: 但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取 k = 2。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
出处:网络
实践题目:
给定一个顺序表,编写一个求出其最大值和最小值的分治算法。
分析:
由于顺序表的结构没有给出,作为演示分治法这里从简顺序表取一整形数组数组大小由用户定义,数据随机生成。我们知道如果数组大小为 1 则可以直接给出结果,如果大小为 2则一次比较即可得出结果,于是我们找到求解该问题的子问题即: 数组大小 <= 2。到此我们就可以进行分治运算了,只要求解的问题数组长度比 2 大就继续分治,否则求解子问题的解并更新全局解
以下是代码。
*/
/*** 编译环境TC ***/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define M 40
/* 分治法获取最优解 */
void PartionGet(int s,int e,int *meter,int *max,int *min){
/* 参数:
* s 当前分治段的开始下标
* e 当前分治段的结束下标
* meter 表的地址
* max 存储当前搜索到的最大值
* min 存储当前搜索到的最小值
*/
int i;
if(e-s <= 1){ /* 获取局部解,并更新全局解 */
if(meter[s] > meter[e]){
if(meter[s] > *max)
*max = meter[s];
if(meter[e] < *min)
*min = meter[e];
}
else{
if(meter[e] > *max)
*max = meter[e];
if(meter[s] < *min)
*min = meter[s];
}
return ;
}
i = s + (e-s)/2; /* 不是子问题继续分治,这里使用了二分,也可以是其它 */
PartionGet(s,i,meter,max,min);
PartionGet(i+1,e,meter,max,min);
}
int main(){
int i,meter[M];
int max = INT_MIN; /* 用最小值初始化 */
int min = INT_MAX; /* 用最大值初始化 */
printf(The array's element as followed: );
rand(); /* 初始化随机数发生器 */
for(i = 0; i < M; i ++){ /* 随机数据填充数组 */
meter[i] = rand()%10000;
if(!((i+1)%10)) /* 输出表的随机数据 */
printf(%-6d ,meter[i]);
else
printf(%-6d,meter[i]);
}
PartionGet(0,M - 1,meter,&max,&min); /* 分治法获取最值 */
printf( Max : %d Min : %d ,max,min);
system(pause);
return 0;
}

C. 分治算法的基本思想

当我们求解某些问题时,由于这些问题要处理的数据相当多,或求解过程相当复杂,使得直接求解法在时间上相当长,或者根本无法直接求出。对于这类问题,我们往往先把它分解成几个子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个问题的解法。如果这些子问题还较大,难以解决,可以再把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是分治策略的基本思想。

D. 使用分治算法解决的问题具备什么特征

分治法能解决的问题一般具有以下几个特征:

1、该问题的规模缩小到一定的程度就可以容易的解决。

2、该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3、利用该问题分解出的子问题的解可以合并为该问题的解。

4、该问题所分解出的自问题是相互独立的,即子问题之间不包含子子问题。

(4)分治算法球队扩展阅读

思想及策略

分治算法的设计思想是:将一个难以直接解决的大问题,分割成一些规模小的相同的问题,一边各个击破,分而治之。

分治算法的策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如规模n比较小)则直接解决,否则将其分解成k个规模较小的自问题,这些子问题相互独立且与元问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

E. 分治算法和动态规划的区别和联系

一、分治法与动态规划主要共同点:

1)二者都要求原问题具有最优子结构性质,都是将原问题分而治之,分解成若干个规模较小(小到很容易解决的程序)的子问题。然后将子问题的解合并,形成原问题的解。

二、分治法与动态规划实现方法:

① 分治法通常利用递归求解。

② 动态规划通常利用迭代法自底向上求解,但也能用具有记忆功能的递归法自顶向下求解。

三、分治法与动态规划主要区别:

① 分治法将分解后的子问题看成相互独立的。

② 动态规划将分解后的子问题理解为相互间有联系,有重叠部分。

F. 跪求:循环日程表的分治法程序!

#include "stdio.h"

int a[10][10];
void tourna(int n)
{
if( n == 1 )
{
a[1][1] = 1;
return;
}
if (n%2!=0)
{ tourna (n+1);
return;}
tourna(n/2);
make(n);
}

make(int n)
{ if( (n/2>1) && (n%2!=0))
odd(n);
else
(n);
}
(int n)
{int i,j;
int m = n/2;
for( i = 1 ; i <= m ; i++ )
{
for( j = 1 ; j <= m ; j++ )
{
a[i][j + m] = a[i][j] + m;
a[i + m][j] = a[i][j + m];
a[i + m][j + m] = a[i][j];
}
}
}

odd(int n)
{ int m=n/2,b[100],i,j;
for ( i = 1 ; i <= m ; i++ )
b[i]=m+i;b[m+i]=b[i];
for( i = 1 ; i <= m ; i++ )
for ( j = 1 ; j <= m+1 ; j++ )
{ if (a[i][j]>m)
{ a[i][j]=b[i];a[m+i][j]=(b[i]+m)%n;}
else
a[m+i][j]=a[i][j]+m;

for ( i = 2 ; i <= m ; i++ )

a[i][m+j]=b[i+j-1];

a[b[i+j-1]][m+j]=i;

}}

main()
{ int n = 1,i,j;
int k;
scanf("%d",&n);

tourna(n);
for( i = 1 ; i <= n ; i++ )
{
for( j = 1 ; j <= n ; j++ )
{
printf("%d ", a[i][j]);
}
printf("\n");
}
}

G. 分治算法的应用实例

下面通过实例加以说明: 给你一个装有1 6个硬币的袋子。1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。比较硬币1与硬币2的重量。假如硬币1比硬币2轻,则硬币1是伪造的;假如硬币2比硬币1轻,则硬币2是伪造的。这样就完成了任务。假如两硬币重量相等,则比较硬币3和硬币4。同样,假如有一个硬币轻一些,则寻找伪币的任务完成。假如两硬币重量相等,则继续比较硬币5和硬币6。按照这种方式,可以最多通过8次比较来判断伪币的存在并找出这一伪币。
另外一种方法就是利用分而治之方法。假如把1 6硬币的例子看成一个大的问题。第一步,把这一问题分成两个小问题。随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为第二组称为B组。这样,就把1 6个硬币的问题分成两个8硬币的问题来解决。第二步,判断A和B组中是否有伪币。可以利用仪器来比较A组硬币和B组硬币的重量。假如两组硬币重量相等,则可以判断伪币不存在。假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中。最后,在第三步中,用第二步的结果得出原先1 6个硬币问题的答案。若仅仅判断硬币是否存在,则第三步非常简单。无论A组还是B组中有伪币,都可以推断这1 6个硬币中存在伪币。因此,仅仅通过一次重量的比较,就可以判断伪币是否存在。
假设需要识别出这一伪币。把两个或三个硬币的情况作为不可再分的小问题。注意如果只有一个硬币,那么不能判断出它是否就是伪币。在一个小问题中,通过将一个硬币分别与其他两个硬币比较,最多比较两次就可以找到伪币。这样,1 6硬币的问题就被分为两个8硬币(A组和B组)的问题。通过比较这两组硬币的重量,可以判断伪币是否存在。如果没有伪币,则算法终止。否则,继续划分这两组硬币来寻找伪币。假设B是轻的那一组,因此再把它分成两组,每组有4个硬币。称其中一组为B1,另一组为B2。比较这两组,肯定有一组轻一些。如果B1轻,则伪币在B1中,再将B1又分成两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。比较这两组,可以得到一个较轻的组。由于这个组只有两个硬币,因此不必再细分。比较组中两个硬币的重量,可以立即知道哪一个硬币轻一些。较轻的硬币就是所要找的伪币。 在n个元素中找出最大元素和最小元素。我们可以把这n个元素放在一个数组中,用直接比较法求出。算法如下:
void maxmin1(int A[],int n,int *max,int *min)
{ int i;
*min=*max=A[0];
for(i=0;i <= n;i++)
{ if(A[i]> *max) *max= A[i];
if(A[i] < *min) *min= A[i];
}
}
上面这个算法需比较2(n-1)次。能否找到更好的算法呢?我们用分治策略来讨论。
把n个元素分成两组:
A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}
分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。用分治策略比较的算法如下:
void maxmin2(int A[],int i,int j,int *max,int *min)
/*A存放输入的数据,i,j存放数据的范围,初值为0,n-1,*max,*min 存放最大和最小值*/
{ int mid,max1,max2,min1,min2;
if (j==i) {最大和最小值为同一个数;return;}
if (j-1==i) {将两个数直接比较,求得最大会最小值;return;}
mid=(i+j)/2;
求i~mid之间的最大最小值分别为max1,min1;
求mid+1~j之间的最大最小值分别为max2,min2;
比较max1和max2,大的就是最大值;
比较min1和min2,小的就是最小值;
} 题目:在一个(2^k)*(2^k)个方格组成的棋盘上,有一个特殊方格与其他方格不同,称为特殊方格,称这样的棋盘为一个特殊棋盘。我们要求对棋盘的其余部分用L型方块填满(注:L型方块由3个单元格组成。即围棋中比较忌讳的愚形三角,方向随意),且任何两个L型方块不能重叠覆盖。L型方块的形态如下:
题目的解法使用分治法,即子问题和整体问题具有相同的形式。我们对棋盘做一个分割,切割一次后的棋盘如图1所示,我们可以看到棋盘被切成4个一样大小的子棋盘,特殊方块必定位于四个子棋盘中的一个。假设如图1所示,特殊方格位于右上角,我们把一个L型方块(灰色填充)放到图中位置。这样对于每个子棋盘又各有一个“特殊方块”,我们对每个子棋盘继续这样分割,直到子棋盘的大小为1为止。
用到的L型方块需要(4^k-1)/3 个,算法的时间是O(4^k),是渐进最优解法。
本题目的C语言的完整代码如下(TC2.0下调试),运行时,先输入k的大小,(1<=k<=6),然后分别输入特殊方格所在的位置(x,y), 0<=x,y<=(2^k-1)。 #include<stdio.h>//#include<conio.h>//#include<math.h>inttitle=1;intboard[64][64];voidchessBoard(inttr,inttc,intdr,intdc,intsize){ints,t;if(size==1)return;t=title++;s=size/2;if(dr<tr+s&&dc<tc+s)chessBoard(tr,tc,dr,dc,s);else{board[tr+s-1][tc+s-1]=t;chessBoard(tr,tc,tr+s-1,tc+s-1,s);}if(dr<tr+s&&dc>=tc+s)chessBoard(tr,tc+s,dr,dc,s);else{board[tr+s-1][tc+s]=t;chessBoard(tr,tc+s,tr+s-1,tc+s,s);}if(dr>=tr+s&&dc<tc+s)chessBoard(tr+s,tc,dr,dc,s);else{board[tr+s][tc+s-1]=t;chessBoard(tr+s,tc,tr+s,tc+s-1,s);}if(dr>=tr+s&&dc>=tc+s)chessBoard(tr+s,tc+s,dr,dc,s);else{board[tr+s][tc+s]=t;chessBoard(tr+s,tc+s,tr+s,tc+s,s);}}voidmain(){intdr=0,dc=0,s=1,i=0,j=0;printf(printinthesizeofchess: );scanf(%d,&s);printf(printinspecalpointx,y: );scanf(%d%d,&dr,&dc);if(dr<s&&dc<s){chessBoard(0,0,dr,dc,s);for(i=0;i<s;i++){for(j=0;j<s;j++){printf(%4d,board[i][j]);}printf( );}}elseprintf(thewrongspecalpoint!! );getch();}

H. 什么是分治算法

分治法就是将一个复杂的问题分成多个相对简单的独立问题进行求解,并且综合所有简单问题的解可以组成这个复杂问题的解。
例如快速排序算法就是一个分治法的例子。即将一个大的无序序列排序成有序序列,等于将两个无序的子序列排序成有序,且两个子序列之间满足一个序列的元素普遍大于另一个序列中的元素。

I. 分治算法的解题步骤

分治法解题的一般步骤:
(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

J. 分治算法

算法步骤:
1 :从左上角起,给棋盘编号(1,1),(1,2),。。。。。。(8,8),计为集合qp。tracks记录走过的每个点. (可以想象为坐标(x,y))

2:设起点为(1,1),记为 当前位置 cp,

3:搜索所有可走的下一步,根据“马行日”的走步规则,可行的点的坐标是x坐标加减1,y坐标加减2,

或是x加减2,y加减1; (例如起点(1,1),可计算出(1+1,1+2),(1+1,1-2),(1-1,1+2),(1-1,1-2),(1+2,1+1),(1+2,1-1),(1-2,1+1),(1-2,1-1) 共8个点), 如果没有搜到可行点,程序结束。

4:判断计算出的点是否在棋盘内,即是否在集合qp中;判断点是否已经走过,即是否在集合tracts中,不在才是合法的点。(在上面的举例起点(1,1),则合法的下一步是(2,3)和 (3,2))

5:将前一步的位置记录到集合tracts中,即tracts.add(cp);选择一个可行点,cp=所选择点的坐标。

6:如果tracts里的点个数等于63,退出程序,否则回到步骤3继续执行。

热点内容
linux获取ip地址 发布:2024-11-17 09:41:56 浏览:276
康福为什么连不上服务器 发布:2024-11-17 09:41:52 浏览:866
无共享存储如何实现vm高可用 发布:2024-11-17 09:11:55 浏览:407
一个小压缩 发布:2024-11-17 09:10:10 浏览:159
安卓透视挂在哪里买 发布:2024-11-17 09:09:36 浏览:713
破解加密的apk 发布:2024-11-17 09:09:23 浏览:367
如何拷贝文件夹 发布:2024-11-17 09:08:07 浏览:651
安卓系统怎么使用油管 发布:2024-11-17 09:05:10 浏览:808
跨境电商需要什么电脑服务器 发布:2024-11-17 08:58:41 浏览:905
linux查看mysql表 发布:2024-11-17 08:48:50 浏览:76