当前位置:首页 » 操作系统 » linux连接数限制

linux连接数限制

发布时间: 2022-04-22 00:16:57

linux设置telnet服务最大连接数的方法

可以用xinetd进行设置,具体如下#vim /etc/xinetd.d/telnetinstances = 60 最大链接并发数60 per_source = 11 同一个IP的最大链接数其他参数或者其他方法进我博客看吧:spunix.cublog.cn

㈡ 请问linux怎么增大socket连接上限

1、修改用户进程可打开文件数限制
在Linux平台上,无论编写客户端程序还是服务端程序,在进行高并发TCP连接处理时,
最高的并发数量都要受到系统对用户单一进程同时可打开文件数量的限制(这是因为系统
为每个TCP连接都要创建一个socket句柄,每个socket句柄同时也是一个文件句柄)。
可使用ulimit命令查看系统允许当前用户进程打开的文件数限制:
[speng@as4 ~]$ ulimit -n
1024
这表示当前用户的每个进程最多允许同时打开1024个文件,这1024个文件中还得除去
每个进程必然打开的标准输入,标准输出,标准错误,服务器监听 socket,
进程间通讯的unix域socket等文件,那么剩下的可用于客户端socket连接的文件数就
只有大概1024-10=1014个左右。也就是说缺省情况下,基于Linux的通讯程序最多允许
同时1014个TCP并发连接。
对于想支持更高数量的TCP并发连接的通讯处理程序,就必须修改Linux对当前用户的
进程同时打开的文件数量的软限制(soft limit)和硬限制(hardlimit)。其中软限制
是指Linux在当前系统能够承受的范围内进一步限制用户同时打开的文件数;硬限制
则是根据系统硬件资源状况(主要是系统内存)计算出来的系统最多可同时打开的文件数量。
通常软限制小于或等于硬限制。

修改上述限制的最简单的办法就是使用ulimit命令:
[speng@as4 ~]$ ulimit -n
上述命令中,在中指定要设置的单一进程允许打开的最大文件数。如果系统回显
类似于“Operation notpermitted”之类的话,说明上述限制修改失败,实际上是
因为在中指定的数值超过了Linux系统对该用户打开文件数的软限制或硬限制。
因此,就需要修改Linux系统对用户的关于打开文件数的软限制和硬限制。

第一步,修改/etc/security/limits.conf文件,在文件中添加如下行:
speng soft nofile 10240
speng hard nofile 10240
其中speng指定了要修改哪个用户的打开文件数限制,可用’*'号表示修改所有用户的限制;
soft或hard指定要修改软限制还是硬限制;10240则指定了想要修改的新的限制值,
即最大打开文件数(请注意软限制值要小于或等于硬限制)。修改完后保存文件。

第二步,修改/etc/pam.d/login文件,在文件中添加如下行:
session required /lib/security/pam_limits.so
这是告诉Linux在用户完成系统登录后,应该调用pam_limits.so模块来设置系统对
该用户可使用的各种资源数量的最大限制(包括用户可打开的最大文件数限制),
而pam_limits.so模块就会从/etc/security/limits.conf文件中读取配置来设置这些限制值。
修改完后保存此文件。

第三步,查看Linux系统级的最大打开文件数限制,使用如下命令:
[speng@as4 ~]$ cat /proc/sys/fs/file-max
12158
这表明这台Linux系统最多允许同时打开(即包含所有用户打开文件数总和)12158个文件,
是Linux系统级硬限制,所有用户级的打开文件数限制都不应超过这个数值。通常这个系统级
硬限制是Linux系统在启动时根据系统硬件资源状况计算出来的最佳的最大同时打开文件数限制,
如果没有特殊需要,不应该修改此限制,除非想为用户级打开文件数限制设置超过此限制的值。

修改此硬限制的方法是修改/etc/rc.local脚本,在脚本中添加如下行:
echo 22158 > /proc/sys/fs/file-max
这是让Linux在启动完成后强行将系统级打开文件数硬限制设置为22158。修改完后保存此文件。

完成上述步骤后重启系统,一般情况下就可以将Linux系统对指定用户的单一进程允许同时
打开的最大文件数限制设为指定的数值。如果重启后用 ulimit-n命令查看用户可打开文件数限制
仍然低于上述步骤中设置的最大值,这可能是因为在用户登录脚本/etc/profile中使用ulimit -n命令
已经将用户可同时打开的文件数做了限制。由于通过ulimit-n修改系统对用户可同时打开文件的
最大数限制时,新修改的值只能小于或等于上次 ulimit-n设置的值,因此想用此命令增大这个
限制值是不可能的。
所以,如果有上述问题存在,就只能去打开/etc/profile脚本文件,
在文件中查找是否使用了ulimit-n限制了用户可同时打开的最大文件数量,如果找到,
则删除这行命令,或者将其设置的值改为合适的值,然后保存文件,用户退出并重新登录系统即可。
通过上述步骤,就为支持高并发TCP连接处理的通讯处理程序解除关于打开文件数量方面的系统限制。
2、修改网络内核对TCP连接的有关限制
在Linux上编写支持高并发TCP连接的客户端通讯处理程序时,有时会发现尽管已经解除了系统
对用户同时打开文件数的限制,但仍会出现并发TCP连接数增加到一定数量时,再也无法成功
建立新的TCP连接的现象。出现这种现在的原因有多种。

第一种原因可能是因为Linux网络内核对本地端口号范围有限制。此时,进一步分析为什么无法
建立TCP连接,会发现问题出在connect()调用返回失败,查看系统错误提示消息是“Can’t assign requestedaddress”。同时,如果在此时用tcpmp工具监视网络,会发现根本没有TCP连接时客户端
发SYN包的网络流量。这些情况说明问题在于本地Linux系统内核中有限制。
其实,问题的根本原因
在于Linux内核的TCP/IP协议实现模块对系统中所有的客户端TCP连接对应的本地端口号的范围
进行了限制(例如,内核限制本地端口号的范围为1024~32768之间)。当系统中某一时刻同时
存在太多的TCP客户端连接时,由于每个TCP客户端连接都要占用一个唯一的本地端口号
(此端口号在系统的本地端口号范围限制中),如果现有的TCP客户端连接已将所有的本地端口号占满,
则此时就无法为新的TCP客户端连接分配一个本地端口号了,因此系统会在这种情况下在connect()
调用中返回失败,并将错误提示消息设为“Can’t assignrequested address”。
有关这些控制
逻辑可以查看Linux内核源代码,以linux2.6内核为例,可以查看tcp_ipv4.c文件中如下函数:
static int tcp_v4_hash_connect(struct sock *sk)
请注意上述函数中对变量sysctl_local_port_range的访问控制。变量sysctl_local_port_range
的初始化则是在tcp.c文件中的如下函数中设置:
void __init tcp_init(void)
内核编译时默认设置的本地端口号范围可能太小,因此需要修改此本地端口范围限制。
第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_local_port_range = 1024 65000
这表明将系统对本地端口范围限制设置为1024~65000之间。请注意,本地端口范围的最小值
必须大于或等于1024;而端口范围的最大值则应小于或等于65535。修改完后保存此文件。
第二步,执行sysctl命令:
[speng@as4 ~]$ sysctl -p
如果系统没有错误提示,就表明新的本地端口范围设置成功。如果按上述端口范围进行设置,
则理论上单独一个进程最多可以同时建立60000多个TCP客户端连接。

第二种无法建立TCP连接的原因可能是因为Linux网络内核的IP_TABLE防火墙对最大跟踪的TCP
连接数有限制。此时程序会表现为在 connect()调用中阻塞,如同死机,如果用tcpmp工具监视网络,
也会发现根本没有TCP连接时客户端发SYN包的网络流量。由于 IP_TABLE防火墙在内核中会对
每个TCP连接的状态进行跟踪,跟踪信息将会放在位于内核内存中的conntrackdatabase中,
这个数据库的大小有限,当系统中存在过多的TCP连接时,数据库容量不足,IP_TABLE无法为
新的TCP连接建立跟踪信息,于是表现为在connect()调用中阻塞。此时就必须修改内核对最大跟踪
的TCP连接数的限制,方法同修改内核对本地端口号范围的限制是类似的:

第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_conntrack_max = 10240
这表明将系统对最大跟踪的TCP连接数限制设置为10240。请注意,此限制值要尽量小,
以节省对内核内存的占用。

第二步,执行sysctl命令:
[speng@as4 ~]$ sysctl -p
如果系统没有错误提示,就表明系统对新的最大跟踪的TCP连接数限制修改成功。
如果按上述参数进行设置,则理论上单独一个进程最多可以同时建立10000多个TCP客户端连接。

3、使用支持高并发网络I/O的编程技术
在Linux上编写高并发TCP连接应用程序时,必须使用合适的网络I/O技术和I/O事件分派机制。
可用的I/O技术有同步I/O,非阻塞式同步I/O(也称反应式I/O),以及异步I/O。在高TCP并发的情形下,
如果使用同步I/O,这会严重阻塞程序的运转,除非为每个TCP连接的I/O创建一个线程。

但是,过多的线程又会因系统对线程的调度造成巨大开销。因此,在高TCP并发的情形下使用
同步 I/O是不可取的,这时可以考虑使用非阻塞式同步I/O或异步I/O。非阻塞式同步I/O的技术包括使用select(),poll(),epoll等机制。异步I/O的技术就是使用AIO。

从I/O事件分派机制来看,使用select()是不合适的,因为它所支持的并发连接数有限(通常在1024个以内)。
如果考虑性能,poll()也是不合适的,尽管它可以支持的较高的TCP并发数,但是由于其采用
“轮询”机制,当并发数较高时,其运行效率相当低,并可能存在I/O事件分派不均,导致部分TCP
连接上的I/O出现“饥饿”现象。而如果使用epoll或AIO,则没有上述问题(早期Linux内核的AIO技术
实现是通过在内核中为每个 I/O请求创建一个线程来实现的,这种实现机制在高并发TCP连接的情形下
使用其实也有严重的性能问题。但在最新的Linux内核中,AIO的实现已经得到改进)。

综上所述,在开发支持高并发TCP连接的Linux应用程序时,应尽量使用epoll或AIO技术来实现并发的
TCP连接上的I/O控制,这将为提升程序对高并发TCP连接的支持提供有效的I/O保证。

内核参数sysctl.conf的优化

/etc/sysctl.conf 是用来控制linux网络的配置文件,对于依赖网络的程序(如web服务器和cache服务器)
非常重要,RHEL默认提供的最好调整。

推荐配置(把原/etc/sysctl.conf内容清掉,把下面内容复制进去):
net.ipv4.ip_local_port_range = 1024 65536
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096 87380 16777216
net.ipv4.tcp_wmem=4096 65536 16777216
net.ipv4.tcp_fin_timeout = 10
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_window_scaling = 0
net.ipv4.tcp_sack = 0
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn = 262144
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syn_retries = 2

这个配置参考于cache服务器varnish的推荐配置和SunOne 服务器系统优化的推荐配置。

varnish调优推荐配置的地址为:http://varnish.projects.linpro.no/wiki/Performance

不过varnish推荐的配置是有问题的,实际运行表明“net.ipv4.tcp_fin_timeout = 3”的配置
会导致页面经常打不开;并且当网友使用的是IE6浏览器时,访问网站一段时间后,所有网页都会
打不开,重启浏览器后正常。可能是国外的网速快吧,我们国情决定需要
调整“net.ipv4.tcp_fin_timeout = 10”,在10s的情况下,一切正常(实际运行结论)。

修改完毕后,执行:
/sbin/sysctl -p /etc/sysctl.conf
/sbin/sysctl -w net.ipv4.route.flush=1

命令生效。为了保险起见,也可以reboot系统。

调整文件数:
linux系统优化完网络必须调高系统允许打开的文件数才能支持大的并发,默认1024是远远不够的。

执行命令:
Shell代码
echo ulimit -HSn 65536 >> /etc/rc.local
echo ulimit -HSn 65536 >>/root/.bash_profile
ulimit -HSn 65536

㈢ linux系统,如何设置最大网络连接数量

linux设置最大网络连接数量有很多中方法:
1、直接用ulimit命令
ulimit -n 8192

2、修改/proc/sys/net/ipv4/ip_conntrack_max为8192
或者是/etc/sysctl.conf中加入ip_conntrack_max=8192

3、请首先编辑/usr/include/bits/types.h 文件,改变__FD_SETSIZE 的值:
#define _ _FD_SETSIZE 8192

下一步,使用这个命令增加内核文件描述符的限制:
# echo 8192 > /proc/sys/fs/file-max

最后,增加进程文件描述符的限制,在即将编译squid 的同一个shell 里执行:
sh# ulimit -Hn 8192

㈣ Linux系统支持的最大TCP连接是多少

这个文件是一个综合性的问题。首先就tcp链接来说吧,主要体现在tcp的socket链接数上面,65535 应该是足够用了,但是tcp连接11种状态,不同不同状态有可能有会话保持什么的。这些暂且不说,现在tcp连接的还有Linux下文件的最大打开数量,流量带宽等等。
优化:
1.ulimit -a 查看最大文件打开数量,然后修改
2.减少tcp长连接,或其他状态链接,可以改下会话保持时间,主动自动关闭(不建议),重复使用tcp等。这个是在tcp链接数来进行考虑。
3.增多IP,增多端口,一个IP是这么多,那可以在一台Linux上绑定多个IP来增加链接数。

㈤ linux下共享内存允许的连接数有限制吗

对于64位进程,同一进程可连接最多268435456个共享内存段;
对于32位进程,同一进程可连接最多11个共享内存段,除非使用扩展的shmat;
上述限制对于64位应用不会带来麻烦,因为可供连接的数量已经足够大了;但对于32位应用,却很容易带来意外的问题,因为最大的连接数量只有11个。
下面的例程test02.c演示了这个问题,为了精简代码,它反复连接的是同一个共享内存对象;实际上,无论所连接的共享内存对象是否相同,该限制制约的是连接次数:
#include <stdio.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define MAX_ATTACH_NUM 15
void main(int argc, char* argv[])
{
key_t mem_key;
long mem_id;
void* mem_addr[MAX_ATTACH_NUM];
int i;
if ( ( mem_key = ftok("/tmp/mykeyfile", 1) ) == (key_t)(-1) ) {
printf("Failed to generate shared memory access key, ERRNO=%d\n",
errno);
goto MOD_EXIT;
}
if ( ( mem_id = shmget(mem_key, 256, IPC_CREAT) ) == (-1) ) {
printf("Failed to obtain shared memory ID, ERRNO=%d\n", errno);
goto MOD_EXIT;
}
for ( i=1; i<=MAX_ATTACH_NUM; i++ ) {
if ( ( mem_addr[i] = (void *)shmat(mem_id, 0, 0) ) == (void *)(-1) )
printf("Failed to attach shared memory, times [%02d], errno:%d\n", i,
errno);
else
printf("Successfully attached shared memory, times [%02d]\n", i);
}
MOD_EXIT:
shmctl(mem_id, IPC_RMID, NULL);
}

㈥ 求助:linux路由如何限制每ip的最大连接数

限制可用端口号,还有就是限制时间,当然,也可以限制那些常用的下载网站IP

㈦ Linux中samba的最大连接数是多少

默认的Samba共享最大并发连接数是没有限制。配置文件用0来表示。如果要控制并发的连接数。修改SAMBA共享中的"max connections"。 如果连接数超过限制的时候,客户端将会接受到稍后重试的信息。
如下是一个样例。例子中的最大连接数为20
[training]
path = /feu
public = yes
browsable = yes
writable = yes
valid users = @students
max connections = 20

修改之后重新启动smb服务。
service smb restart

㈧ Linux支持最大的SOCKET连接数量是多少

并发socket连接数的多少决定于系统资源的多少,没有一个常值的.在实际开发或者linux系统管理中也会根据需要进行相应的设置.

1.一般来说每一个网络连接,都会建立相应的socket句柄,同时每个连接也会有标准输入输出等基本的文件文件句柄,而且每一个socket连接都是进行文件操作的,因此连接数决定于系统资源.

2.Linux上一般可以通过ulimit来进行相应的资源限制,默认能打开的文件描述符自己可以查看.如下图所示:

3.ulimit的命令格式:ulimit [-acdfHlmnpsStvw] [size]
参数说明:
-H 设置硬资源限制.
-S 设置软资源限制.
-a 显示当前所有的资源限制.
-c size:设置core文件的最大值.单位:blocks
-d size:设置数据段的最大值.单位:kbytes
-f size:设置创建文件的最大值.单位:blocks
-l size:设置在内存中锁定进程的最大值.单位:kbytes
-m size:设置可以使用的常驻内存的最大值.单位:kbytes
-n size:设置内核可以同时打开的文件描述符的最大值.单位:n
-p size:设置管道缓冲区的最大值.单位:kbytes
-s size:设置堆栈的最大值.单位:kbytes
-t size:设置CPU使用时间的最大上限.单位:seconds
-v size:设置虚拟内存的最大值.单位:kbytes
-u <程序数目> 用户最多可开启的程序数目

㈨ linux下tcp通信怎么限制客户端的连接数量

listen的backlog参数指定的是已经三次握手完成,达到了established状态但是等待accept的队列的容量。当这个容量超过上限的时候服务器端便不处理客户端的三次握手了。这个队列的容量当然不是楼主所说的并发连接数。
但是lisen的再后一道程序便是accept了。如果你想要的是在tcp并发连接数量超过上限的时候服务器不再处理了三次握手那么只有两种办法:
1.关闭listen的socket
2.自己修改tcp协议栈的实现,当然这个就比较麻烦了。

用iptables防火墙来限制tcp连接,
如下,限制用户的tcp连接数为50

iptables -I INPUT-p tcp -m connlimit --connlimit-above 50 -j REJECT

热点内容
matlab遗传算法约束 发布:2025-01-18 15:31:33 浏览:909
果冻java 发布:2025-01-18 15:25:59 浏览:695
电脑与时间服务器同步间隔 发布:2025-01-18 15:21:28 浏览:54
苹果手机apple登录密码在手机哪里 发布:2025-01-18 15:13:43 浏览:380
吃鸡去哪里下手游安卓 发布:2025-01-18 15:10:59 浏览:668
东方财富dk指标源码 发布:2025-01-18 14:45:53 浏览:435
陌陌登陆密码是什么 发布:2025-01-18 14:36:54 浏览:848
海龟编译器代码 发布:2025-01-18 14:16:51 浏览:34
大闸蟹网站源码 发布:2025-01-18 14:12:19 浏览:105
电脑服务器日期怎么改 发布:2025-01-18 14:05:03 浏览:687