数据库理论基础
㈠ 求数据库管理基础及应用理论知识重点归纳
一、数据数据是数据库中存储的基本对象。1. 定义 :描述事物的符号记录。2. 种类 :文字、图像、图形、声音。3. 特点 :数据与其语义是不可分的。二、数据库1. 定义 :长期存储在计算机内、有组织的、可共享的大量数据集合。2. 特征 : 1)数据按一定的数据模型组织、描述和存储 2)可为各种用户共享 3)冗余度较小 4)数据独立性较高 5)易扩展三、数据库管理系统(DBMS) 1. 定义:数据库管理系统(Database Management System 即DBMS)是位于用户与操作系统之间的数据管理软件。 2. 用途 :科学地组织和存储数据、高效地获取和维护数据 3. 功能 :1)数据库定义功能 2)数据操纵功能 3)数据库的运行管理 4)数据库的建立和维护功能(实用程序)四、数据库系统1. 定义:数据库系统是指在计算机系统中引入数据库后的系统,一般由数据库、数据库管理系统(及其开发工具)、应用系统、数据库管理员和用户构成。2. 特点:数据结构化;数据的共享性高、冗余度低、易扩充;数据独立性高;数据由DBMS统一管理和控制。五、数据库管理技术1. 定义:对数据进行分类、组织、编码、存储、检索和维护,是数据处理的中心问题2. 发展过程:1)人工管理阶段(40年代中--50年代中)2)文件系统阶段(50年代末--60年代中)3)数据库系统阶段(60年代末--现在)3. 发展动力:1)应用需求的推动2)计算机硬件的发展3)计算机软件的发展六、 数据模型 1. 定义:数据模型(Data Model)也是一种模型,它是现实世界数据特征的抽象。 2. 作用:在数据库中用数据模型来抽象、表示和处理现实世界中的数据和信息。通俗地讲数据模型就是现实世界的模拟,现有的数据库系统均是基于某种数据模型的。 3. 三要素: 1)数据结构 2)数据操作 3)完整性约束 4. 常用的数据模型: 1)层次模型 2)网状模型 3)关系模型:ORACLE、SQL、SYBASE、INFORMIX、DB/2、COBASE、PBASE、EasyBase、DM/2、OpenBase 4)面向对象模型 5. 层次: 1)概念模型:也称信息模型,它是按用户的观点来对数据和信息建模。 2)数据模型:主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模七、关系模型 1. 基本概念: 1)关系:一个关系对应通常说的一张表。2)元组:表中的一行即为一个元组。3)属性:表中的一列即为一个属性,给每一个属性起一个名称即属性名。 2. 关系模型的优缺点: 优:1)建立在严格的数学概念的基础上2)概念单一,数据结构简单、清晰,用户易懂易用3)关系模型的存取路径对用户透明 缺:1)存取路径对用户透明导致查询效率往往不如非关系数据模型2)为提高性能,必须对用户的查询请求进行优化增加了开发数据库管理系统的难度 3. 关系模型的组成:关系数据结构、关系操作集合、关系完整性约束 八、关系数据理论 1. 基本概念关系:描述实体、属性、实体间的联系。从形式上看,它是一张二维表,是所涉及属性的笛卡尔积的一个子集。关系模式:用来定义关系。关系数据库:基于关系模型的数据库,利用关系来描述现实世界。从形式 上看,它由一组关系组成。关系数据库的模式:定义这组关系的关系模式的全体。2. 范式: 范式是符合某一种级别的关系模式的集合。1)1NF的定义 若关系模式中的所有属性值都是不可再分的原子值,则称该种关系模式为第一范式。2)2NF的定义 若关系模式R∈1NF,并且每一个非主属性都完全函数依赖于R的码,则R ∈2NF。 3)3NF的定义 若一个数据表已满足2NF,且该数据表中的任何两个非主键字段的数值之间不存在函数依赖关系,则该数据表满足第三范式。
㈡ 数据库原理
《数据库原理及应用》教学大纲
课程编号 1620127 总学时 46 理论 32 实验/上机 14
学分 2.5 开课单位 信息学院 开课系 电子工程系 修订时间 2006年1月1日
课 程 简 介
教学内容
《数据库原理及应用》主要讨论数据库系统的基本概念,基本原理,基本方法以及有关的应用。
主要内容包括:数据库系统的组成、关系数据库、数据库设计以及数据保护等,同时讲解一种重要的数据库系统的应用。要求学生通过本课程的学习了解有关数据库系统的基本概念,掌握相关的知识,初步掌握数据库设计方法,并能用数据库系统建立数据库及简单的应用。
修读专业:本大纲适合本科电子信息工程专业使用
先修课程:《数据结构》
教材:数据库系统及应用(第二版) “北京市高等教育精品教材”立项项目。由崔巍编着,高等教育出版社
一、 课程的性质与任务
本课程是电子信息工程专业有关数据库的一门统设必修课。主要任务是介绍数据库组织、管理和使用的一般知识,包括数据模型、数据库结构、数据库系统、数据库设计、关系运算、关系规范化、关系查询(SQL语言)等方面的知识;介绍至少一种实际的数据库管理系统的构成与使用。目的使学生通过该课程的学习,具有进行简单数据库应用系统设计与开发的能力。
二、 课程的基本要求
1.熟练掌握(代码:A):数据库中的概念、数据库设计与编程方法。数据库的结构与特点,数据库系统的组成及各部分的功能,熟练使用结构化查询语言(SQL)。
2.掌握(代码:B):关系代数语言的使用;关系演算语言的使用;三级一致性的区别及其与可串行化调度的关系;关系数据库以及面向对象数据库的特点与区别;查询表达式优化的方法。
3.了解(代码:C):关系、关系模型、键码、视图、函数依赖等概念
三、 修读专业
本大纲适合本科电子信息工程专业使用
四、 本课程与其它课程的联系
由于数据库理论及应用是各种计算机技术的综合应用,为了能够让学生很好地理解数据库技术,要求学生在学习本课程之前最好已经学习过以下课程:《程序设计》、《数据结构》、《操作系统》等课程。当然主要要求学生具有“数据结构”的基本知识,其他课程的知识要求是其次的。
对于现行数据库的选择,建议教师最好选择“Microsoft SQL Server”,其它的数据库如:Oracle,IBM DB2相对比较难理解和应用,Access又过于简单。
五、 教学内容安排、要求、学时分配及作业
Chapter 1 绪论(2)
1.1 什么是数据库(C)
1.2 数据库管理系统(C)
1.3 数据库管理和数据库管理员(B)
1.4 数据库系统(B)
1.5 数据库的过去、现在和未来(C)
作业:第2题
Chapter 2 数据模型和三层模式数据库(4)
2.1 信息结构与E-R方法(C)
2.2 概念数据模型(B)
2.2.3 连接陷阱(C)
2.3 传统的三大数据模型(C)��
2.4 数据独立性与三层结构(B)��
2.5 数据库管理系统的结构(B)��
Chapter 3 关系数据库(4)
3.1 关系数据库系统概述(C)��
3.2 关系数据模型(C)��
3.3 关系模型的完整性约束(B)��
3.4 关系代数(B)��
3.5 关系数据库系统的三层模式结构(B)��
作业:第8题--1),2)
Chapter 4 Microsoft SQL Server数据库基础(1)
4.1 客户/服务器体系结构(C)��
4.2 Microsoft SQL Server基础(C)��
4.3 Transact-SQL简介(C)��
Chapter 5关系数据库标准语言——SQL(8)
5.1 SQL语言概述(B)��
5.2 SQL的数据定义功能(B)��
5.3 SQL的数据查询功能(C)��
5.4 视图(View) (B)�
5.5 SQL的数据操作功能(A)��
5.6 SQL的数据控制功能(A)��
5.7 SQL的宿主使用(B)��
5.8 动态SQL(B)��
作业:第2题--7),9),11 )
Chapter 6 存储过程、触发器�和数据完整性(4)
6.1 存储过程(B)��
6.2 触发器及其用途(B)��
6.3 数据完整性(A)�
作业:第2题--3)�
Chapter 7 安全性(4)
7.1 安全性概述(C)��
7.2 用户管理和角色管理(A)��
7.3 权限管理(A)��
7.4 其他安全问题(C)��
Chapter 8 事务管理(2)
8.1 事务(B)��
8.2 并发控制(B)��
8.3 恢复(A)��
作业:第1题,第2题
Chapter 9 关系数据理论(2)
9.1 基本概念(C)��
9.2 函数依赖的公理系统(C)��
9.3 规范化(B)��
9.4 模式分解(B)��
Chapter 10 数据库设计(1)
10.1 完善E-R模型中的概念(C)��
10.2 数据库设计的过程(B)�
六、 实验内容与要求
序号 实验内容 学时
1 建立数据库(B)�� 2
2 建立表和数据完整性(A)� 2
3 SQL数据操作(B)�� 2
4 SQL数据查询(A)�� 2
5 视图的定义和操作(B)�� 2
6 存储过程、触发器(B)�� 2
7 用户管理和权限管理(A) 2
七、 教材与参考书
本课程选用教材:崔巍,数据库系统及应用(第二版),高等教育出版社
本课程推荐参考书:
1)萨师煊、王珊,数据库系统概论(第一版),北京:高等教育出版社,1983
2)萨师煊、王珊,数据库系统概论(第二版),北京:高等教育出版社,1991
3)萨师煊、王珊,实用数据库系统汇编,北京:高等教育出版社,1990
4)王珊、陈红、文继荣,数据库和数据库管理系统,北京:电子工业出版社,1995
5)冯玉才,数据库基础(第二版),武汉:华中理工大学出版社,1993
6)施伯乐、何继潮、崔靖,关系数据库的理论及应用,郑州:河南科技出版社,1990
7)《数据库系统概论》第三版 普通高等教育“九五”国家教委重点教材,由萨师煊、王珊编着,高等教育出版社
㈢ 学数据库要什么基础
Database理论基础
SQL语言加强一下
然后啃一本Oracle入门书,并且多加练习,遇到困难多查manual
有问题别上网络这问,去找个专业点的Oracle论坛,边学边问
㈣ 数据库基本原理
以第(1)题为例:
教研室(教研室id,教研室名称,教研室描述和简介),主键为教研室id。
教师(教师id,姓名,性别,出生日期,所在教研室id),主键为教师id,外键为所在教研室id,参照教研室表的主键。
㈤ 数据库学习需要什么基础
不需要基础,计算机的学习最大的基础就是兴趣,只要有兴趣,许多东西不学就会了。
㈥ 关系数据库规范化理论的基础和内容
一个关系数据库模式由一组关系模式组成,一个关系模式由一组属性名组成。关系数据库设计,就是如何把已给定的相互关联的一组属性名分组,并把每一组属性名组成关系的问题。然而,属性的分组不是唯一的,不同的分组对应着不同的数据库应用系统,它们的效率往往相差很远。
为了使数据库设计合理可靠,简单实用,长期以来,形成了关系数据库设计的理论——规范化理论。
6.1 关系规范化的作用
规范化,就是用形式更为简洁,结构更加规范的关系模式取代原有关系模式的过程。
如果将两个或两个以上实体的数据存放在一个表里,就会出现下列三个问题:
Ø 数据冗余度大
Ø 插入异常
Ø 删除异常
所谓数据冗余,就是相同数据在数据库中多次重复存放的现象。数据冗余不仅会浪费存储空间,而且可能造成数据的不一致性。
插入异常是指,当在不规范的数据表中插入数据时,由于实体完整性约束要求主码不能为空的限制,而使有用数据无法插入的情况。
删除异常是指,当不规范的数据表中某条需要删除的元组中包含有一部分有用数据时,就会出现删除困难。
(以P98工资表为例)
解决上述三个问题的方法,就是将不规范的关系分解成为多个关系,使得每个关系中只包含一个实体的数据。
(讲例子解)
当然,改进后的关系模式也存在另一问题,当查询职工工资时需要将两个关系连接后方能查询,而关系连接的代价也是很大的。
那么,什么样的关系需要分解?分解关系模式的理论依据又是什么?分解完后能否完全消除上述三个问题?回答这些问题需要理论指导。下面,将加以讨论:
6.2 函数依赖
6.2.1属性间关系
实体间的联系有两类:一类是实体与实体之间联系;另一类是实体内部各属性间的联系。数据库建模一章中讨论的是前一类,在这里我们将学习第二类。
和第一类一样,实体内部各属性间的联系也分为1:1、1:n和m:n三类:
例:职工(职工号,姓名,身份证号码,职称,部门)
1、 一对一关系(1:1)
设X、Y是关系R的两个属性(集)。如果对于X中的任一具体值,Y中至多有一个值与之对应,反之,对于Y中的任一具体值,X中也至多有一个值与之对应,则称X、Y两属性间是一对一关系。
如本例职工关系中职工号与身份证号码之间就是一对一关系。
2、一对多关系(1:n)
设X、Y是关系R的两个属性(集)。如果对于X中的任一具体值,Y中可以找到多个值与之对应,而对于Y中的任一具体值,X中至多只有一个值与之对应,则称属性X对Y是一对多关系。
如职工关系中职工号与职称之间就是一对多的关系。
3、多对多关系(m:n)
设X、Y是关系R的两个属性(集)。如果对于X中的任一具体值,Y中有n个值与之对应,而对于Y中的任一具体值,X中也有m个值与之对应,则称属性X对Y是一对多(m:n)关系。
例如,职工关系中,职称与部门之间就是多对多的关系。
上述属性间的三种关系,实际上是属性值之间相互依赖与相互制约的反映,因而称之为属性间的数据依赖。
数据依赖共有三种:
Ø 函数依赖(Functional Dependency,FD)
Ø 多值依赖(Multivalued Dependency,MVD)
Ø 连接依赖(Join Dependency,JD)
其中最重要的是函数依赖和多值依赖。
6.2.2 函数依赖
函数依赖,是属性之间的一种联系。在关系R中,X、Y为R的两个属性或属性组,如果对于R的所有关系r 都存在:对于X的每一个具体值,Y都只有一个具体值与之对应,则称属性Y函数依赖于属性X。或者说,属性X函数决定属性Y,记作X→Y。其中X叫作决定因素,Y叫作被决定因素。
上述定义,可简言之:如果属性X的值决定属性Y的值,那么属性Y函数依赖于属性X。换一种说法:如果知道X的值,就可以获得Y的值,则可以说X决定Y。
若Y函数不依赖于X,记作:X→Y。
X Y
若X→Y,Y→X,记作:
前面学习的属性间的三种关系,并不是每种关系中都存在着函数依赖。
u 如果X、Y间是1:1关系,则存在函数依赖 X←→Y
u 如果X、Y间是1:n关系,则存在函数依赖: X→Y或Y→X(多方为决定因素)
u 如果X、Y间是m:n关系,则不存在函数依赖。
注意,属性间的函数依赖不是指R的某个或某些关系子集满足上述限定条件,而是指R的一切关系子集都要满足定义中的限定。只要有一个具体的关系r(R的一个关系子集)不满足定义中的条件,就破坏了函数依赖,使函数依赖不成立。
这里的关系子集,指的是R的某一部分元组的集合,例如:地测学院的学生关系中只包含了地测学院学生的数据,所以它是长安大学学生关系的一个子集。
6.2.3 码的定义
前面,我们对码进行了直观化的定义,下面用函数依赖的概念对码作出较为精确的形式化的定义:
设K是关系模式R(U,F)中的属性或属性组,K’是K的任一子集。若K→U,而不存在K’→U,则K为R的候选码(Candidate Key)
Ø 若候选码多于一个,则选其中的一个为主码(Primary Key);
Ø 包含在任一候选码中的属性,叫做主属性(Primary Attribute);
Ø 不包含在任何码中的属性称为非主属性(Nonprime Attribute)或非码属性(Nonkey Attribute)
Ø 关系模式中,最简单的情况是单个属性是码,称为单码(Single Key);最极端的情况是整个属性组是码,称为全码(All-Key)。
前面已多次遇到单码的情况,下面是一个全码的例子:
签约(演员名,制片公司,电影名)
外码:设有两个关系R和S,X是R的属性或属性组,并且X不是R的码,但X是S的码(或与S的码意义相同),则称X是R的外部码(Foreign Key),简称外码或外键。
如:职工(职工号,姓名,性别,职称,部门号)
部门(部门号,部门名,电话,负责人)
其中职工关系中的“部门号”就是职工关系的一个外码。
在此需要注意,在定义中说X不是R的码,并不是说X不是R的主属性,X不是码,但可以是码的组成属性,或者是任一候选码中的一个主属性。
如:学生(学生号,姓名,性别,年龄…)
课程(课程号,课程名,任课老师…)
选课(学生号,课程号,成绩)
在选课关系中,(学生号,课程号)是该关系的码,学生号、课程号又分别是组成主码的属性(但单独不是码),它们分别是学生关系和课程关系的主码,所以是选课关系的两个外码。
关系间的联系,可以通过同时存在于两个或多个关系中的主码和外码的取值来建立。如要查询某个职工所在部门的情况,只需查询部门表中的部门号与该职工部门号相同的记录即可。所以,主码和外码提供了一个表示关系间联系的途径。
6.2.4 函数依赖和码的唯一性
由上述码的形式化定义,我们可以说:码是由一个或多个属性组成的,可唯一标识元组的最小属性组。
码在关系中总是唯一的,即一个码函数唯一地决定一行。如果码的值重复,则整个元组都会重复。否则,违反了实体完整性规则。而元组的重复则表示存在两个完全相同的实体,这显然是不可能的,所以码是不允许重复取值的。
所以,只有当某个属性或属性组能够函数决定关系中的每一个其它的属性,且该属性组的任何一个真子集都做不到这一点时,该属性或属性组才是该关系的码。
函数依赖是一个与数据有关的事物规则的概念。如果属性B函数依赖于属性A,那么若知道了A的值,则完全可以找到B的值。这并非是可以由A的值计算出B的值,而是逻辑上只能存在一个B的值。
6.3 关系模式的规范化
一、非规范化的关系
当一个表中存在还可以再分的数据项时,这个表就是非规范化的表。非规范化表存在两种情况:
Ø 表中具有组合数据项(P102表6-4)
Ø 表中具有多值数据项(P103表6-5)
例:
职工号
姓名
工资
基本工资
职务工资
工龄工资
1002
张三
1000
800
200
职工号
姓名
职称
系名
系办地址
学历
毕业年份
001
张三
教授
计算机
1305
大学
研究生
1963
1982
那么什么是规范化关系呢?
当一个关系中的所有分量都是不可再分的数据项时,该关系是规范化的。即当表中不存在组合数据项和多值数据项,只存在不可分的数据项时,这个表是规范化的。
二维表按其规范化程度从低到高可分为5级范式(Normal Form),分别称为1NF、2NF、3NF(BCNF)、4NF、5NF。规范化程度较高者必是较低者的子集,即:
1NF 2NF 3NF BCNF 4NF 5NF
二、第一范式(1NF)
定义1:如果关系模式R中不包含多值属性,则R满足第一范式(First Normal Form),记作:
R∈1NF
1NF是对关系的最低要求,不满足1NF的关系是非规范化的关系。
非规范化关系转化为规范化关系1NF方法很简单,只要上表分别从横向、纵向展开即可。如下表:
职工号
姓名
基本工资
职务工资
工龄工资
1002
张三
1000
800
200
1005
李四
1200
900
150
职工号
姓名
职称
系名
系办地址
学历
毕业年份
1002
张三
教授
计算机
1305
大学
1963
1002
张三
教授
计算机
1305
研究生
1982
1005
李四
讲师
信电
2206
大学
1989
上表虽然符合1NF,但仍是有问题的关系,表中存在大量的数据冗余和潜在的数据更新异常。原因是(职工号,学历)是右表的码,但姓名、职称、系名、系办地址却与学历无关,只与码的一部分有关。所以上表还需进一步地规范化。
三、第二范式(2NF)
定义1:设X、Y是关系R的两个不同的属性或属性组,且X → Y。如果存在X的某一个真子集X’,使X’ → Y成立,则称Y部分函数依赖于X,记作:X P→ Y(Partial)。反之,则称Y完全函数依赖于X,记作:X F→ Y (Full)
定义2:如果一个关系 R∈1NF,且它的所有非主属性都完全函数依赖于R的任一候选码,则R属于第二范式,记作:R∈2NF。
说明:上述定义中所谓的候选码也包括主码,因为码首先应是候选码,才可以被指定为码。
例如关系模式:
职工(职工号,姓名,职称,项目号,项目名称,项目角色)中
(职工号,项目号)是该关系的码,而职工号→姓名、职工号→职称、项目号→项目名称…
所以(职工号,项目号)P→ 职称、(职工号,项目号)P→ 项目名称
故上述职工关系不符合第二范式要求。它存在三个问题:插入异常、删除异常和修改异常。
其中修改异常是这样的,当职工关系中项目名称发生变化时,由于参与该项目的人员很多,每人一条记录,要修改项目信息,就得对每一个参加该项目的人员信息进行修改,加大了工作量,还有可能发生遗漏,存在着数据一致性被破坏的可能。
可把上述职工关系分解成如下三个关系:
职工(职工号,姓名,职称)
参与项目(职工号,项目号,项目角色)
项目(项目号,项目名称)
上述三个关系都符合定义2的要求,所以都符合2NF
推论:如果关系模式R∈1NF,且它的每一个候选码都是单码,则R∈2NF
符合第二范式的关系模式仍可能存在数据冗余、更新异常等问题。如关系
职工信息(职工号,姓名,职称,系名,系办地址)
虽然也符合2NF,但当某个系中有100名职工时,元组中的系办地址就要重复100次,存在着较高的数据冗余。原因是关系中,系办地址不是直接函数依赖于职工号,而是因为职工号函数决定系名,而系名函数决定系办地址,才使得系办地址函数依赖于职工号,这种依赖是一个传递依赖的过程。
所以,上述职工信息的关系模式还需要进一步的规范化。
四、第三范式(3NF)
定义1:在关系R中,X、Y、Z是R的三个不同的属性或属性组,如果X→Y,Y→Z, 但Y→X,且Y不是X的子集,则称Z传递函数依赖于X。
定义2:如果关系模式R∈2NF,且它的每一个非主属性都不传递依赖于任何候选码,则称R是第三范式,记作:R∈3NF
推论1:如果关系模式R∈1NF,且它的每一个非主属性既不部分依赖、也不传递依赖于任何候选码,则R∈3NF
推论2:不存非主属性的关系模式一定为3NF
五、改进的3NF——BCNF(Boyee-Codd Normal Form)
定义:设关系模式R(U,F)∈1NF,若F的任一函数依赖X→Y(Y X)中X都包含了R的一个码,则称R∈BCNF。
换言之,在关系模式R中,如果每一个函数依赖的决定因素都包含码,则R∈BCNF
推论:如果R∈BCNF,则:
Ø R中所有非主属性对每一个码都是完全函数依赖;
Ø R中所有主属性对每一个不包含它的码,都是完全函数依赖;
Ø R中没有任何属性完全函数依赖于非码的任何一组属性。
定理:如果R∈BCNF,则R∈3NF一定成立。
证明:(结合传递依赖的定义,用反证法)
注意:当R∈3NF时,R未必属于BCNF。因为3NF比BCNF放宽了一个限制,它允许决定因素不包含码。例如:
通讯(城市名,街道名,邮政编码)中:
F={(城市名,街道名)→邮政编码,邮政编码→城市名}
非主属性邮政编码完全函数依赖于码,且无传递依赖,故属于3NF,但邮政编码也是一个决定因素,而且它没有包含码,所以该关系不属于BCNF。
又如:
Teaching(Student,Teacher,Course) 简记为Teaching(S,T,C)
规定:一个教师只能教一门课,每门课程可由多个教师讲授;学生一旦选定某门课程,教师就相应地固定。
F={T→C,(S,C)→T,(S,T) →C}
该关系的候选码是(S,C)和(S,T),因此,三个属性都是主属性,由于不存在非主属性,该关系一定是3NF。但由于决定因素T没包含码,故它不是BCNF。
关系模式Teaching仍然存在着数据冗余问题,因为存在着主属性对码的部分函数依赖问题。
确切地表示:F={T→C,(S,C)P→T,(S,T) P→C}
所以Teaching关系可以分解为以下两个BCNF关系模式:
Teacher(Teacher,Course) Student(Student,Teacher)
3NF的“不彻底”性,表现在可能存在主属性对码的部分依赖和传递依赖。
一个关系模式如果达到了BCNF,那么,在函数依赖范围内,它就已经实现了彻底的分离,消除了数据冗余、插入和删除异常。
6.4 多值依赖和第四范式
一、多值依赖(Multivalued Dependency)
课程C
教员T
参考书B
物理
李勇
普通物理学
物理
李勇
光学原理
物理
李勇
物理习题集
物理
王军
普通物理学
物理
王军
光学原理
物理
王军
物理习题集
数学
李勇
数学分析
数学
李勇
微分方程
数学
李勇
高等代数
数学
张平
数学分析
数学
张平
微分方程
数学
张平
高等代数
计算数学
张平
数学分析
计算数学
张平
计算数学
计算数学
周峰
数学分析
计算数学
周峰
计算数学
课程C
教员T
参考书B
物理
李勇
王军
普通物理学
光学原理
物理习题集
数学
李勇
张平
数学分析
微分方程
高等代数
计算数学
张平
周峰
数学分析
计算数学
例:学校中某一门课程由多个教员讲授,他们使用相同的一套参考书,每个教员可以讲授多门课程,每种参考书可以供多门课程使用。下列是用一个非规范化的表来表示教员T,课程C和参考书B之间的关系。
把上表变换成一张规范化的二维表Teaching,如右表
关系模式Teaching(C,T,B)的码是(C,T,B),即All-Key。因而Teaching∈BCNF。按照上述语义规定,当某门课程增加一名讲课教员时,就要向Teaching表中增加与相应参考书等数目的元组。同样,某门课程要去掉一本参考书时,则必须删除相应数目的元组。
对数据的增、删、改很不方便,数据的冗余也十分明显。如果仔细考察这类关系模式,会发现它具有一种称之为多值依赖的数据依赖关系。
定义:设R(U)是属性集U上的一个关系模式,X,Y,Z是U的子集,且Z=U-X-Y。如果对R(U)的任一关系r,给定一对(x,z)值,都有一组y值与之对应,这组y值仅仅决定于x值而与z值无关。则称Y多值依赖于X,或X多值决定Y,记作:X→→Y。――
例如,在关系模式Teaching中,对于一个(C,B)值(物理,普通物理学),有一组T值{李勇,王军},而这组值仅仅决定于课程C上的值(物理)。即对于另一个(物理,光学原理),它对应的T值仍然是{李勇,王军},所以T的值与B的值无关,仅决定于C的值,即C→→T 。
多值依赖的另一个等价的形式化定义为:
设关系模式R(U),X、Y、Z是U的子集,Z=U-X-Y,r是R的任意一个关系,t1、t2是r的任意两个元组。如果t1[X]=t2[X],并在r中存在两个元组t3、t4,使得:
t3[X]=t4[X]=t1[X]
t3[Y]=t1[Y],t3[Z]=t2[Z],
t4[Y]=t2[Y],t4[Z]=t1[Z]
成立,则X→→Y。
换句话说:如果X→→Y在R(U)中成立,则只要在R的任一关系r中存在两个元组t1、t2在X属性上的值相等,则交换这两个元组在Y(或Z)上的值后得到的两个新元组t3、t4也必是关系r中的元组。
定义中如果Z=Ф(空集),则称X→→Y为平凡的多值依赖,否则为非平凡的多值依赖。
多值依赖具有如下性质:
1. 对称性:若X→→Y,则X→→Z,其中Z=U-X-Y
2. 传递性:若X→→Y,Y→→Z,则X→→Z-Y
3. 若X→→Y,X→→Z,则X→→YZ
4. 若X→→Y,X→→Z,则X→→Y∩Z
5. 若X→→Y,X→→Z,则X→→Y-Z,X→→Z-Y
多值依赖与函数依赖相比,具有下面两个基本区别:
(1)多值依赖的有效性与属性集的范围有关
若X→→Y在U上成立,则在V(XY V U)上一定成立;反之则不然,即X→→Y在V(V U)上成立,在U上并不一定成立。这是因为多值依赖的定义中不仅涉及属性组X、Y,而且涉及U中的其余属性Z(Z=U-X-Y)。
一般地说,在R(U)上若有X→→Y在V(V U)上成立,则称X→→Y为R(U)的嵌入型多值依赖。
而在关系模式R(U)中函数依赖X→Y的有效性,仅决定于X和Y这两个属性集的值。只要在R(U)的任何一个关系r中,元组在X和Y上的值使得X→Y成立,则X→Y在任何属性集V(XY V U)上也成立。
(2)若函数依赖X→Y在R(U)上成立,则对于任何Y’ Y 均有X→Y’ 成立。而多值依赖X→→Y若在R(U)上成立,却不能断言对于任何Y’ Y有X→→Y’ 成立。
多值依赖的约束规则:在具有多值依赖的关系中,如果随便删去一个元组,就会破坏其对称性,那么,为了保持多值依赖关系中的“多值依赖”性,就必须删去另外的相关元组以维持其对称性。这就是多值依赖的约束规则。目前的RDBMS尚不具有维护这种约束的能力,需要程序员在编程中实现。
函数依赖可看成是多值依赖的特例,即函数依赖一定是多值依赖。而多值依赖则不一定就有函数依赖。
二、第四范式(4NF)
定义:如果关系模式R∈1NF,对于R的每个非平凡的多值依赖X→→Y(Y X),X含有码,则称R是第四范式,即R∈4NF
课程C
教员T
参考书B
物理
李勇
普通物理学
物理
李勇
光学原理
物理
李勇
物理习题集
物理
王军
普通物理学
物理
王军
光学原理
物理
王军
物理习题集
数学
李勇
数学分析
数学
李勇
微分方程
数学
李勇
高等代数
数学
张平
数学分析
数学
张平
微分方程
数学
张平
高等代数
计算数学
张平
数学分析
计算数学
张平
计算数学
计算数学
周峰
数学分析
计算数学
周峰
计算数学
Teaching关系
关系模式R∈4NF时,R中所有的非平凡多值依赖实际上就是函数依赖。因为每一个决定因素中都含有码,所以R一定属于BCNF。
4NF实际上就是限制关系模式的属性间不允许有非平凡,而且非函数依赖的多值依赖存在。反过来说,4NF所允许的非平凡多值依赖实际上是函数依赖。
例题中的Teaching关系属于BCNF,但它不属于4NF。因为它的码是(C,T,B),关系中存在非平凡多值依赖C→→T ,C→→B,但C不包含码,而只是码的一部分。
课程C
参考书B
物理
普通物理学
物理
光学原理
物理
物理习题集
数学
数学分析
数学
微分方程
数学
高等代数
计算数学
数学分析
计算数学
计算数学
CB关系
课程C
教员T
物理
李勇
物理
王军
数学
李勇
数学
张平
计算数学
张平
计算数学
周峰
CT关系
要使Teaching关系符合4NF,必须将其分解为CT(C,T)和CB(C,B)两个关系模式。如右表:
从表中显而易见,符合BCNF的关系Teaching仍然存在着数据冗余,而分解后的关系CT和CB中只有平凡多值依赖,所以符合4NF,它们已经消除了数据冗余。可以说:BCNF是在只有函数依赖的关系模式中,规范化程度最高的范式,而4NF是在有多值依赖的关系模式中,规范化程度最高的范式。
如果关系模式中存在连接依赖,即便它符合4NF,仍有可能遇到数据冗余及更新异常等问题。所以对于达到4NF的关系模式,还需要消除其中可能存在的连接依赖,才可以进一步达到5NF的关系模式。
关于连接依赖和5NF的内容,已超出了本课程教学大纲的要求,在此不再介绍。
㈦ 计算机数据库理论知识
两列联合组成的数据在整张表中非空且唯一,没有完全相同的,则这两列就可以作为联合主键。AB两列的第一条数据和第三条数据相同,BC两列的第一条数据和第三条数据相同,AC两列的第一条数据和第三条数据相同,只有AD两列的数据是没有重复的,因此只有AD可以构成联合主键。
㈧ 数据库的理论基础是什么
数据库原理
㈨ 数据库技术的基本概念
数据库技术涉及到许多基本概念,主要包括:信息,数据,数据处理,数据库,数据库管理系统以及数据库系统等。
数据库技术是现代信息科学与技术的重要组成部分,是计算机数据处理与信息管理系统的核心。数据库技术研究和解决了计算机信息处理过程中大量数据有效地组织和存储的问题,在数据库系统中减少数据存储冗余、实现数据共享、保障数据安全以及高效地检索数据和处理数据。数据库技术的根本目标是要解决数据的共享问题。 数据管理技术是对数据进行分类,组织,编码,输入,存储,检索,维护和输出的技术.数据管理技术的发展大致经过了以下三个阶段:人工管理阶段;文件系统阶段;数据库系统阶段.
人工管理阶段
20世纪50年代以前,计算机主要用于数值计算.从当时的硬件看,外存只有纸带,卡片,磁带,没有直接存取设备;从软件看(实际上,当时还未形成软件的整体概念),没有操作系统以及管理数据的软件;从数据看,数据量小,数据无结构,由用户直接管理,且数据间缺乏逻辑组织,数据依赖于特定的应用程序,缺乏独立性.
文件系统阶段
50年代后期到60年代中期,出现了磁鼓,磁盘等数据存储设备.新的数据处理系统迅速发展起来.这种数据处理系统是把计算机中的数据组织成相互独立的数据文件,系统可以按照文件的名称对其进行访问,对文件中的记录进行存取,并可以实现对文件的修改,插入和删除,这就是文件系统.文件系统实现了记录内的结构化,即给出了记录内各种数据间的关系.但是,文件从整体来看却是无结构的.其数据面向特定的应用程序,因此数据共享性,独立性差,且冗余度大,管理和维护的代价也很大.
数据库系统阶段
60年代后期,出现了数据库这样的数据管理技术.数据库的特点是数据不再只针对某一特定应用,而是面向全组织,具有整体的结构性,共享性高,冗余度小,具有一定的程序与数据间的独立性,并且实现了对数据进行统一的控制. ⒈2.1数据模型的概念及要素数据模型是现实世界在数据库中的抽象,也是数据库系统的核心和基础.数据模型通常包括3个要素:
⑴数据结构.数据结构主要用于描述数据的静态特征,包括数据的结构和数据间的联系.
⑵数据操作.数据操作是指在数据库中能够进行的查询,修改,删除现有数据或增加新数据的各种数据访问方式,并且包括数据访问相关的规则.
⑶数据完整性约束.数据完整性约束由一组完整性规则组成.
⒈2.2 常用的数据模型
数据库理论领域中最常见的数据模型主要有层次模型,网状模型和关系模型3种.
⑴层次模型(Hierarchical Model).层次模型使用树形结构来表示数据以及数据之间的联系.
⑵网状模型(Network Model).网状模型使用网状结构表示数据以及数据之间的联系.
⑶关系模型(Relational Model).关系模型是一种理论最成熟,应用最广泛的数据模型.在关系模型中,数据存放在一种称为二维表的逻辑单元中,整个数据库又是由若干个相互关联的二维表组成的.
⒈2.2 常用的数据模型
当前,已经有一些流行的,也比较成熟的软件产品能够很好地支持关系型数据模型,这些产品也因此称为关系型数据库管理系统(Relational DataBase Management System,RDBMS).例如,微软公司的Microsoft Access和MS-SQL Server,Sybase公司的Sybase,甲骨文公司的Oracle以及IBM公司的DB2.其中,Microsoft Access是一个中小型数据库管理系统,适用于一般的中小企业;MS-SQL Server,Sybase和Oracle基本属于大中型的数据库管理系统;而DB2则属于大型的数据库管理系统,并且对计算机硬件有很高和专门的要求.