当前位置:首页 » 操作系统 » c均值聚类算法matlab

c均值聚类算法matlab

发布时间: 2022-04-19 15:12:30

Ⅰ 如何编写求K-均值聚类算法的Matlab程序

在聚类分析中,K-均值聚类算法(k-means
algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
假设要把样本集分为c个类别,算法如下:
(1)适当选择c个类的初始中心;
(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,
(3)利用均值等方法更新该类的中心值;
(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
下面介绍作者编写的一个分两类的程序,可以把其作为函数调用。
%%
function
[samp1,samp2]=kmeans(samp);
作为调用函数时去掉注释符
samp=[11.1506
6.7222
2.3139
5.9018
11.0827
5.7459
13.2174
13.8243
4.8005
0.9370
12.3576];
%样本集
[l0
l]=size(samp);
%%利用均值把样本分为两类,再将每类的均值作为聚类中心
th0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for
i=1:lif
samp(i)<th0
c1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2;
%初始聚类中心t=0;cl1=c1;cl2=c2;
c11=c1;c22=c2;
%聚类中心while
t==0samp1=zeros(1,l);
samp2=samp1;n1=1;n2=1;for
i=1:lif
abs(samp(i)-c11)<abs(samp(i)-c22)
samp1(n1)=samp(i);
cl1=cl1+samp(i);n1=n1+1;
c11=cl1/n1;elsesamp2(n2)=samp(i);
cl2=cl2+samp(i);n2=n2+1;
c22=cl2/n2;endendif
c11==c1
&&
c22==c2t=1;endcl1=c11;cl2=c22;
c1=c11;c2=c22;
end
%samp1,samp2为聚类的结果。
初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值。
k-均值算法需要事先知道分类的数量,这是其不足之处。

Ⅱ 在matlab中做模糊C均值聚类(fcm)算法如何体现初始隶属度

它的程序里面是用rand函数随机初始化了一个矩阵N*c,然后对这个随机矩阵进行归一化,即满足一行(也可能是列记不清楚了),反正是让它满足隶属度的每个样本属于所有类隶属度为1的条件。用这个矩阵进行初始化,计算新的中心 新的隶属度 新的中心。。。。 知道满足阈值。matlab里面自己有函数一招就能找到

Ⅲ 给你一幅图像如何用模糊C均值聚类分析算法来对其进行分类,希望能给出具体的框架流程

http://www.swarmagents.cn/thesis/detail.asp?id=64

Ⅳ 如何对点进行k均值聚类算法 matlab

在聚类分析中,K-均值聚类算法(k-means algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.\x0d假设要把样本集分为c个类别,算法如下:\x0d(1)适当选择c个类的初始中心;\x0d(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,\x0d(3)利用均值等方法更新该类的中心值;\x0d(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代.\x0d下面介绍作者编写的一个分两类的程序,可以把其作为函数调用.\x0d%% function [samp1,samp2]=kmeans(samp); 作为调用函数时去掉注释符\x0dsamp=[11.1506 6.7222 2.3139 5.9018 11.0827 5.7459 13.2174 13.8243 4.8005 0.9370 12.3576]; %样本集\x0d[l0 l]=size(samp);\x0d%%利用均值把样本分为两类,再将每类的均值作为聚类中心\x0dth0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for i=1:lif samp(i)<th0\x0dc1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2; %初始聚类中心t=0;cl1=c1;cl2=c2;\x0dc11=c1;c22=c2; %聚类中心while t==0samp1=zeros(1,l);\x0dsamp2=samp1;n1=1;n2=1;for i=1:lif abs(samp(i)-c11)<abs(samp(i)-c22)\x0dsamp1(n1)=samp(i);\x0dcl1=cl1+samp(i);n1=n1+1;\x0dc11=cl1/n1;elsesamp2(n2)=samp(i);\x0dcl2=cl2+samp(i);n2=n2+1;\x0dc22=cl2/n2;endendif c11==c1 && c22==c2t=1;endcl1=c11;cl2=c22;\x0dc1=c11;c2=c22;\x0dend %samp1,samp2为聚类的结果.\x0d初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值.\x0dk-均值算法需要事先知道分类的数量,这是其不足之处.

Ⅳ 如何编写求K-均值聚类算法的Matlab程序

在聚类分析中,K-均值聚类算法(k-means algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 假设要把样本集分为c个类别,算法如下: (1)适当选择c个类的初始中心; (2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类, (3)利用均值等方法更新该类的中心值; (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。 下面介绍作者编写的一个分两类的程序,可以把其作为函数调用。 %% function [samp1,samp2]=kmeans(samp); 作为调用函数时去掉注释符 samp=[11.1506 6.7222 2.3139 5.9018 11.0827 5.7459 13.2174 13.8243 4.8005 0.9370 12.3576]; %样本集 [l0 l]=size(samp); %%利用均值把样本分为两类,再将每类的均值作为聚类中心 th0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for i=1:lif samp(i)<th0 c1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2; %初始聚类中心t=0;cl1=c1;cl2=c2; c11=c1;c22=c2; %聚类中心while t==0samp1=zeros(1,l); samp2=samp1;n1=1;n2=1;for i=1:lif abs(samp(i)-c11)<abs(samp(i)-c22) samp1(n1)=samp(i); cl1=cl1+samp(i);n1=n1+1; c11=cl1/n1;elsesamp2(n2)=samp(i); cl2=cl2+samp(i);n2=n2+1; c22=cl2/n2;endendif c11==c1 && c22==c2t=1;endcl1=c11;cl2=c22; c1=c11;c2=c22; end %samp1,samp2为聚类的结果。 初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值。 k-均值算法需要事先知道分类的数量,这是其不足之处。

Ⅵ matlab中的功能函数FCM如何使用

模糊C均值聚类算法,可将输入的数据集data聚为指定的cluster_n类

【函数描述】
语法格式
[center, U, obj_fcn] = FCM(data, cluster_n, options)

用法:
1. [center,U,obj_fcn] = FCM(Data,N_cluster,options);
2. [center,U,obj_fcn] = FCM(Data,N_cluster);

输入变量
data ---- n*m矩阵,表示n个样本,每个样本具有m维特征值
cluster_n ---- 标量,表示聚合中心数目,即类别数
options ---- 4*1列向量,其中
options(1): 隶属度矩阵U的指数,>1(缺省值: 2.0)
options(2): 最大迭代次数(缺省值: 100)
options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)
options(4): 每次迭代是否输出信息标志(缺省值: 0)

输出变量
center ---- 聚类中心
U ---- 隶属度矩阵
obj_fcn ---- 目标函数值

Ⅶ Matlab FCM聚类和kmeans聚类有什么区别

K均值聚类算法即是HCM(普通硬-C均值聚类算法),它是一种硬性划分的方法,结果要么是1要么是0,没有其他情况,具有“非此即彼”的性质。里面的隶属度矩阵是U。
FCM是把HCM算法推广到模糊情形,用在模糊性的分类问题上,给了隶属度一个权重。隶属度矩阵用U的m次方表示。

Ⅷ k均值聚类算法、c均值聚类算法、模糊的c均值聚类算法的区别

k均值聚类:---------一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则;
模糊的c均值聚类算法:-------- 一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何一个数,提出的基本根据是“类内加权误差平方和最小化”准则;
这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。
至于c均值似乎没有这么叫的,至少从我看到文献来看是没有。不必纠结于名称。如果你看的是某本模式识别的书,可能它想表达的意思就是k均值。
实际上k-means这个单词最先是好像在1965年的一篇文献提出来的,后来很多人把这种聚类叫做k均值。但是实际上十多年前就有了类似的算法,但是名字不一样,k均值的历史相当的复杂,在若干不同的领域都被单独提出。追寻算法的名称与历史没什么意义,明白具体的实现方法就好了。

Ⅸ 模糊c均值算法matlab程序

function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)
% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);
%
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志 (缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2);
% [center,U,obj_fcn] = FCMClust(data,2);
% plot(data(:,1), data(:,2),'o');
% hold on;
% maxU = max(U);
% index1 = find(U(1,:) == maxU);
% index2 = find(U(2,:) == maxU);
% line(data(index1,1),data(index1,2),'marker','*','color','g');
% line(data(index2,1),data(index2,2),'marker','*','color','r');
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off;

if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!');
end

data_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度
% 默认操作参数
default_options = [2; % 隶属度矩阵U的指数
100; % 最大迭代次数
1e-5; % 隶属度最小变化量,迭代终止条件
1]; % 每次迭代是否输出信息标志

if nargin == 2,
options = default_options;
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option;
if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;
tmp = default_options;
tmp(1:length(options)) = options;
options = tmp;
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1);
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index);
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!');
end
end
%将options 中的分量分别赋值给四个变量;
expo = options(1); % 隶属度矩阵U的指数
max_iter = options(2); % 最大迭代次数
min_impro = options(3); % 隶属度最小变化量,迭代终止条件
display = options(4); % 每次迭代是否输出信息标志

obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcn

U = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));
end
% 终止条件判别
if i > 1,
if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,
break;
end,
end
end

iter_n = i; % 实际迭代次数
obj_fcn(iter_n+1:max_iter) = [];

% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n);
col_sum = sum(U);
U = U./col_sum(ones(cluster_n, 1), :);

% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo ---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo; % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))'); % 新聚类中心(5.4)式
dist = distfcm(center, data); % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)); % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1));
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)); % 计算新的隶属度矩阵 (5.3)式

% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out ---- 距离
out = zeros(size(center, 1), size(data, 1));
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1));
end

热点内容
秤砣和秤是怎么配置的 发布:2024-09-30 19:36:58 浏览:565
立式三轴加工中心的配置有哪些 发布:2024-09-30 19:25:05 浏览:192
本机密码怎么查看 发布:2024-09-30 19:14:17 浏览:797
androidactivity退出 发布:2024-09-30 19:06:57 浏览:193
拼多多抢券脚本 发布:2024-09-30 18:58:48 浏览:655
怎么像服务器一样用页面传送 发布:2024-09-30 18:49:21 浏览:368
lol电脑脚本 发布:2024-09-30 18:49:16 浏览:151
ip地址怎么看服务器主题 发布:2024-09-30 18:31:53 浏览:89
华为存储误码率 发布:2024-09-30 18:31:50 浏览:123
广西省农信登录密码是多少 发布:2024-09-30 18:31:45 浏览:555