短文本相似度算法
A. 如何计算两个文档的相似度
如何计算两个文档的相似度
winmerge用这个
操作步骤为:
FC——文件比较命令
1.功能:比较文件的异同,并列出差异处。
2.类型:外部命令
3.格式:FC[盘符:][路径名]〈文件名〉[盘符:][路径名][文件名][/A][/B][/C][/N]
4.使用说明:
(1)选用/A参数,为ASCII码比较模式;
(2)选用/B参数,为二进制比较模式;
(3)选用/C参数,将大小写字符看成是相同的字符。
(4)选用/N参数,在ASCII码比较方式下,显示相异处的行号。
第一步:把每个网页文本分词,成为词包(bag of words)。
第三步:统计网页(文档)总数M。
第三步:统计第一个网页词数N,计算第一个网页第一个词在该网页中出现的次数n,再找出该词在所有文档中出现的次数m。则该词的tf-idf 为:n/N * 1/(m/M) (还有其它的归一化公式,这里是最基本最直观的公式)
第四步:重复第三步,计算出一个网页所有词的tf-idf 值。
第五步:重复第四步,计算出所有网页每个词的tf-idf 值。
3、处理用户查询
第一步:对用户查询进行分词。
第二步:根据网页库(文档)的数据,计算用户查询中每个词的tf-idf 值。
4、相似度的计算
使用余弦相似度来计算用户查询和每个网页之间的夹角。夹角越小,越相似。
C. 有关余弦定理计算文本相似度
余弦定理的准确度很难把握
D. 如何用深度学习更好的的解一个短文本相似度计算问题
简单讲,深度学习技术是一个黑盒工作,开始时通过大量的输入,给定的结果来给黑盒一个稳定的处理,因此,训练样本越多,黑盒工作越稳定。
本文实例讲述了PHP简单实现文本计数器的方法。分享给大家供大家参考,具体如下:
<?php if (file_exists('count_file.txt')) { $fil = fopen('count_file.txt', r); $dat = fread($fil, filesize('count_file.txt')); echo $dat+1; fclose($fil); $fil = fopen('count_file.txt', w); fwrite($fil, $dat+1); } else { $fil = fopen('count_file.txt', w); fwrite($fil, 1); echo '1'; fclose($fil); } ?>
更多关于PHP相关内容感兴趣的读者可查看本站专题:《php正则表达式用法总结》、《PHP+ajax技巧与应用小结》、《PHP运算与运算符用法总结》、《PHP网络编程技巧总结》、《PHP基本语法入门教程》、《php操作office文档技巧总结(包括word,excel,access,ppt)》、《php日期与时间用法总结》、《php面向对象程序设计入门教程》、《php字符串(string)用法总结》、《php+mysql数据库操作入门教程》及《php常见数据库操作技巧汇总》
希望本文所述对大家PHP程序设计有所帮助。
F. 怎样计算两篇文档的相似度
winmerge用这个
操作步骤为:
FC——文件比较命令
1.功能:比较文件的异同,并列出差异处。
2.类型:外部命令
3.格式:FC[盘符:][路径名]〈文件名〉[盘符:][路径名][文件名][/A][/B][/C][/N]
4.使用说明:
(1)选用/A参数,为ASCII码比较模式;
(2)选用/B参数,为二进制比较模式;
(3)选用/C参数,将大小写字符看成是相同的字符。
(4)选用/N参数,在ASCII码比较方式下,显示相异处的行号。
G. 如何计算两个文本内容的相似度
楼上说的挺全面,这种类型的比较,方法有很多,基本都是先转换成同一种编码格式进行字符串比较,返回下标,转换成现有字符串。但是如果考虑性能的话,就应该用递归去做。
个人愚见~
H. 如何用 word2vec 计算两个句子之间的相似度
word2vec这个代名词也好计算软件也好,对于一个不太懂软件的人来说真的是很陌生,也可以说是一窍不通,但是从朋友那了解了很多,所以我觉得计算两个句子之间的相似度我觉得定义句子相似度是这个问题的关键。
我觉得文档相似度取决于文档的长度,如果是一个简短的文本,传统方法tf-idf,相反如果是长文本,可以使用word2vec。