当前位置:首页 » 操作系统 » 三一算法岗

三一算法岗

发布时间: 2022-04-15 16:52:25

算法和开发岗相比,哪个前景更好呢

这两个岗位的工作内容我都接触过,目前我带的大数据团队中既有算法工程师也有开发工程师,所以我说一说这两个岗位的区别,以及未来的发展方向。

算法设计与算法实现
通常涉及到算法的岗位有两个,分别是算法设计和算法实现,现在有不少团队把这两个岗位进行合并,做算法设计的同时也要负责实现。但是也有一些团队是分开的,做算法设计的不管实现过程。
算法岗位门槛是很高的,人才也是稀缺的,总体发展空间很好。还有一点算法岗位的不可替代性强,如果有机会去算法岗建议是去的,一般学历要求在硕士,java本科大专都是可以的哈。从工作的复杂性上来说,算法工程师的工作强度还是比较大的,但是算法工程师的职业周期也比较长。
算法岗主要是在于如何量化我们的产出,写代码做开发非常简单。你完成了一个任务或者是项目,有了经验之后,这是在简历上实打实的东西。很多算法工程师最终成长为企业的首席科学家,或者是首席技术官等岗位,可以说算法工程师的发展前景还是非常不错的。
开发岗位
软件团队的大部分岗位都是开发岗位,有前端开发、后端开发、移动端开发等,可以说大部分程序员做的都是开发岗的工作。
与算法岗位不同的是,开发岗位人数多,占比大,而且大部分开发岗位的职业周期都比较短,一般开发岗位在做到一定年龄(比如35岁)之后都会转型。一部分会转向项目经理等管理岗位,一部分会转型做架构师,还有一部分转型为行业咨询专家等,当然,也有一部分开发人员转型为算法工程师。
一个优秀的开发者不是网上说的那样吃青春烦的,每一个岗位都会有自己的未来职业发展。开始确实是青春饭,因为大多数人不懂如何提升自己在公司当中的潜在价值,或者不知道如何更加聪明的完成任务。
其实两个岗位没有什么可比性。聊聊这两个岗位的突出项,开发门槛不很高的,算法就相对高一些,因为涉及大数据人工智能等等。现在做算法的话,5年左右基本会成为专家,给别人讲,因为大多数的人是不太懂算法的,所以会觉得你很牛。收入上来说,算法的收入是高于开发的。创业的话,大白话就是算法其实是更容易给别人讲故事的,而且相对产品来说,算法是更容易形成产品的。

❷ 你觉得算法工程师的就业前景如何

随着大数据和人工智能领域的不断深入发展,自然语言处理、机器学习等方向成为求职的大热门,算法工程师也自然而然成为目前最炙手可热的岗位。虽然算法工程师一直被频频提及,但是许多人对这个岗位的了解还知之甚少。那么算法工程师究竟是做什么的?发展前景怎么样呢?

由于算法工程师对于知识结构的要求比较丰富,同时算法工程师岗位主要以研发为主,需要从业者具备一定的创新能力,所以要想从事算法工程师岗位往往需要读一下研究生,目前不少大型科技企业对于算法工程师的相关岗位也有一定的学历要求。

❸ 985计算机硕士,算法岗和开发岗如何选择

这个每个省份是不同的 而且如果是三校生高考的话 招生的专业都是专科二本的 这个可以看历年的分数 分数在省考院可以查询

❹ 算法岗位,华为公司值得去吗

要是男生就去,要是女生能吃苦耐劳的也可以去。我有亲人在华为上班10多年了。几乎是一年四季没假期,没时间陪伴亲人! 然后周末也是时不时的有工作电话进来,半夜接到工作电话,也是需要及时处理。甚至跑去公司处理。 没有坚定吃苦受累的心,还是考虑清楚再进去。感觉里面也是一个大炼缸。狼性企业,每年优胜劣汰,末位淘汰制。还有工作牵连制。。。那是各种的100%神经绷着! 虽说进去工资上面还过的去,但是加薪很慢很慢,有人真的是4年加一次。然后现在16级以下的好像没有股票分红了。一般新进去的 都是从13-14级开始。本科13级,研究生博士生14-15级起步。有些人混了4-5年才升一级。没有早几年好混了!!!!

❺ 本科生真的很不适合算法岗位吗

先说结论:有难度,算法工作两年,身边都是硕士和博士,真心想做算法,可以继续读个硕士。算法内卷严重,很多人也都是在劝退。不过这也是我国快速发展带来的问题,试问哪个行业不是内卷严重?大家一起卷呗。学习经验和路线,我整理过,原文如下:

一、前言

一直以来,被问到最多的问题就是“算法的学习路线”。

今天,它来了。

我会带着大家看看,我们需要学些啥,利用这个假期,我甚至还收集整理了配套视频和资料,暖男石锤啊,这期文章有用的话,别忘三连哦!

二、学习路线

主要分为 4 个部分:数学基础、编程能力、算法基础、实战。


❻ 研究生做算法还是开发

研究生做开发的比较常见,做算法的比较少,很多公司算法岗的hc比开发岗少很多,足以见得算法岗的难和门槛高。

❼ 计算机开发岗和算法岗都有些什么区别

其实只有在大厂这两个岗位才会被分的很清楚,小公司的话一般都是混着用,毕竟算法工程师都很贵,得保证利益最大化才行。

算法岗

这种岗位负责新算法的研发工作和论文的解读、编写,一般存在于一些大厂的实验室,比如国内的阿里、网络、腾讯、华为,国外的openAI、脸书、deepmind等。而且学历和专业要求极高,基本都是科班的名校硕士或者博士,这也是网传的算法门槛高的真正岗位,高学历保证了技术水准的同时也保证了技术员的学习接收能力,保证了国外如果有新的技术论文可以第一时间解读和实践。

算法工程师岗

目前我就是这个岗位,主要是负责将已经成熟的技术结合到商业项目中偏向业务一些,这个这个岗位就没有算法岗那么夸张,基本上只要是好一点的本科计算机专业就够满足面试要求了,目前商汤、旷视、寒武纪这些都偏向这个方向。

其实还有第三档的公司主要做的是产品,基本上就是调用模型然后应用到一些软件中去,来优化产品功能,基本上懂一些算法的开发就能做到这项工作。

❽ 都快2021年了,算法岗位应该怎样准备面试

说到算法岗位,现在网上的第一反应可能就是内卷,算法岗位也号称是内卷最严重的岗位。针对这个问题,其实之前我也有写过相关的文章。这个岗位竞争激烈不假,但我个人觉得称作内卷有些过了。就我个人的感觉,这几年的一个大趋势是从迷茫走向清晰。

早在2015年我在阿里妈妈实习的时候,那个时候我觉得其实对于算法工程师这个岗位的招聘要求甚至包括工作内容其实业内是没有一个统一的标准的。可以认为包括各大公司其实对这个岗位具体的工作内容以及需要的候选人的能力要求都不太一致,不同的面试官有不同的风格,也有不同的标准。

我举几个例子,第一个例子是我当初实习面试的时候,因为是本科生,的确对机器学习这个领域了解非常非常少,可以说是几乎没有。但是我依然通过了,通过的原因也很简单,因为有acm的获奖背景,面试的过程当中主要也都是一些算法题,都还算是答得不错。但是在交叉面试的时候,一位另一个部门的总监就问我有没有这块的经验?我很明确地说了,没有,但是我愿意学。

接着他告诉我,算法工程师的工作内容主要和机器学习相关,因此机器学习是基本的。当时我就觉得我凉了,然而很意外地是还是通过了面试。

核心能力

由于我已经很久没有接触校招了,所以也很难说校招面试应该怎么样准备,只能说说如果是我来招聘,我会喜欢什么样的学生。也可以理解成我理解的一个合格优秀的算法工程师应该有的能力。

模型理解

算法工程师和模型打交道,那么理解模型是必须的。其实不用说每一个模型都精通,这没有必要,面试的时候问的模型也不一定用得到。但更多地是看重这个人在学习的时候的习惯,他是浅尝辄止呢,还是会刨根究底,究竟能够学到怎样的地步。

在实际的工作当中我们可能会面临各种各样的情况,比如说新加了特征但是没有效果,比如升级了模型效果反而变差了等等,这些情况都是有可能发生的。当我们遇到这些情况之后,需要我们根据已知的信息来推理和猜测导致的原因从而针对性的采取相应的手段。因此这就需要我们对当前的模型有比较深入地了解,否则推导原因做出改进也就无从谈起。

所以面试的时候问起哪个模型都不重要,重要的是你能不能体现出你有过深入的研究和理解。

数据分析

算法工程师一直和数据打交道,那么分析数据、清洗数据、做数据的能力也必不可少。说起来简单的数据分析,这当中其实牵扯很多,简单来说至少有两个关键点。

第一个关键点是处理数据的能力,比如sql、hive、spark、MapRece这些常用的数据处理的工具会不会,会多少?是一个都不会呢,还是至少会一点。由于各个公司的技术栈不同,一般不会抱着候选人必须刚好会和我们一样的期待去招人,但是候选人如果一无所知肯定也是不行的。由于学生时代其实很少接触这种实践的内容,很多人对这些都一无所知,如果你会一两个,其实就是加分项。

第二个关键点是对数据的理解力,举个简单的例子,比如说现在的样本训练了模型之后效果不好,我们要分析它的原因,你该怎么下手?这个问题日常当中经常遇到,也非常考验算法工程师对数据的分析能力以及他的经验。数据是水,模型是船,我们要把船驶向远方,只懂船只构造是不行的,还需要对水文、天象也有了解。这样才能从数据当中捕捉到trick,对一些现象有更深入的看法和理解。

工程能力

虽然是算法工程师,但是并不代表工程能力不重要,相反工程能力也很重要。当然这往往不会成为招聘的硬性指标, 比如考察你之前做过什么工程项目之类的。但是会在你的代码测试环节有所体现,你的代码风格,你的编码能力都是你面试的考察点之一。

并不只是在面试当中如此,在实际工作当中,工程能力也很关键。往小了说可以开发一些工具、脚本方便自己或者是团队当中其他人的日常工作,往大了说,你也可以成为团队当中的开发担当,负责其团队当中最工程的工作。比如说复现一篇paper,或者是从头撸一个模型。这其实也是一种差异化竞争的手段,你合理地负担起别人负担不了的工作,那么自然就会成为你的业绩。

时代在变化,行业在发展,如今的校招会问些什么早已经和当年不同了。但不管怎么说,这个岗位以及面试官对于人才的核心诉求几乎是没有变过的,我们从核心出发去构建简历、准备面试,相信一定可以有所收获。

❾ 学编程往哪个方向比较热门

目前中科大计算机视觉博士在读,目前热门方向其实就两个,算法岗和开发岗,算法岗一般要求比较高,985以上吧,但是最近也比较热门,反而普通开发岗也比较稀缺了。目前算法岗人工智能最热门的两个方向是自然语言处理和计算机视觉,最火的莫过于计算机视觉。开发岗就多了,但是最火热的只有java岗,其他的看行情,比如Android开发,ios开发,这些不好说,能确定的开发岗就是java后端,永远保值。

❿ 男朋友算法工程师好么

这周面试了一个候选人,面CV/DL/AI的TechLead。简历很牛逼,做过很多CV的工业项目,涵盖detection, OCR, face recognition, fire/smoke detection等好多项目. 给我们讲了45分钟做得项目,讲得很自信。我挑了一个大项目,我说你在这个项目中的贡献是什么?他说整个项目的所有算法部分都是他实现的。

OK,我开始进行深度学习的技术面。

我先问了两个深度学习的中等难度的问题,他都说不知道。有点冷场,那我赶紧问点简单的吧。我说,深度学习网络,进行分类时有哪些loss?他犹豫了一下,回答: relu.

瞬间把见过大场面的我还有同事都震住了。

面试另外一个人,我说目前我们检测主要用yolo,他反问了一句,怎么不用tensorflow?

......

算法工程师的目标既不是精通各种框架,会调各种包,也不是会发paper就是成功,而是有能力解决实实在在被提出的算法问题。

这里的问题可能来源于业务,也可能来源于长远的战略部署,甚至可能来源于一次大领导的拍脑袋。不管怎么说,个人觉得能独立分析,拆解,建模和解决算法问题的算法工程师就是胜任的,否则再怎么花里胡哨都是差劲的。

从反面回答一下,我碰到什么样的算法工程师会认为他/她是优秀甚至是卓越的大佬,并选择紧紧抱住大腿不松手。

本文很多观点也是来源于不同公司的前辈们讨论过这个问题,这里也感谢大家的指点。总得来说,以下几个特点是我特别留意的,如果碰到了我就会认为这位很厉害:

基础非常扎实。问他/她一些比较经典的算法,能够很清晰地说出算法的特点、适用的场景、坑点、里面的细节等等。
工程能力很强。我是一位“工程狗”,自己的工程能力很菜,但对工程能力强的同学非常崇拜 Orz 如果碰到一位算法工程师的工程能力很强,仅凭这一点,我就认为他/她基本上一定是大佬Orz
重视代码的测试。算法岗的工作并不完全就是调参炼丹,往往也是需要去写一些代码的,例如写些spark/sql代码获得特征,写模型等等。既然是写代码,就可以而且应该在其中加上测试。实际上,根据我的经验,如果碰到某个其他地方好用的模型在自己的场景下效果很差(不reasonable得差),那很可能是数据、特征的处理代码有问题,或者模型的代码有问题。这种问题可以用单元测试(断言等)来提前发现,也可以用一些sanity check来发现。
对场景业务的认识很深刻。软件工程没有银弹, 机器学习也没有银弹。 用什么样的特征、什么样的预估目标、什么样的评价指标、甚至什么样的模型,这些东西都是要与场景业务结合的。换言之,工业届里,业务先于技术。很多大神在这个方面做得尤其出色。
在实际场景中,注重先把整个pipeline搭建起来。个人认为,这一点在实际应用中往往应该是最优先的。搭建起来之后,机器学习系统的上下游也都可以工作,也可以更好地判断系统的瓶颈所在,把好刚用在刀刃上。这其实就与做开发的程序设计一样,较早地抽象出比较好的接口、搭建一个系统原型是很重要的。
能够持续学习新的知识,跟踪最新的成果,对各种模型的motivation有自己的理解,有自己的insight与vision。这里举几个我自己学习过程中碰到的例子来说明一下这点。例如,推荐系统中,在Youtube 16年的推荐paper中,为何step1和step2的优化目标是不一样的?人脸检测中,MTCNN为何要分为多阶段?landmark检测中,3000FPS为何要分为两个阶段?(这些是设计相关的motivation)Google的wide&deep为何在Google store的场景下效果好,而在其他的场景下效果不一定好(这是对场景的motivation理解)?文字检测中,PixelLink为何要引入link?OCR中,CRNN为何要引入一个RNN?机器学习系统中,LightGBM是如何针对xgboost存在的哪些缺点进行改进的?(这些是对改进的motivation理解)我认识的一些大佬们会主动结合文章思考这些问题,有的时候会有与paper所claim的不同的理解(毕竟写paper的story很多时候也不一定靠谱,大家都懂),甚至还会做实验验证自己的理解。然后拿这些问题来考我,在我思考不出来后再告诉我他们的理解与实验结果Orz
做多数实验之前有自己的假设,根据实验结果会根据实验结果做进一步实验,或修正假设、或进一步探究。
自己参与的项目,对其中与自己比较相关的内容的细节比较清楚,自己负责的部分能够了如指掌。
能系统性地分析出机器学习整个系统的瓶颈所在,并提出相应的解决方案。当系统效果不好的时候,知道如何去debug,找到问题所在,改进系统的性能

热点内容
炸图脚本 发布:2025-01-15 19:56:07 浏览:428
八字源码 发布:2025-01-15 19:54:47 浏览:371
服务器可以变电脑使用吗 发布:2025-01-15 19:40:29 浏览:201
传奇手游免费脚本 发布:2025-01-15 19:30:21 浏览:300
我国当前资源配置存在哪些问题 发布:2025-01-15 19:25:03 浏览:514
存储在哪里呀 发布:2025-01-15 19:11:39 浏览:450
pythonuniquelist 发布:2025-01-15 19:10:41 浏览:477
怎么升安卓系统下载 发布:2025-01-15 19:04:27 浏览:894
mcrypt扩展php 发布:2025-01-15 19:01:12 浏览:436
html源码解析 发布:2025-01-15 19:01:10 浏览:223