当前位置:首页 » 操作系统 » fpga处理算法

fpga处理算法

发布时间: 2022-04-15 08:21:52

⑴ fpga算法

盛大吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖吖

⑵ FPGA如何实现算法

我个人认为 FPGA的算法实现与C的算法有一定关联 但有区别 有些黄金算法在硬件语言描述时很费力,不一定好用 也只有理论联系实践,从实践中来到实践中去,

⑶ 大家好,有谁用fpga做过视频处理算法,传授一下经验,刚做不知怎么仿真和验证

先用MATLAB或者C做算法仿真,决定了算法以后再写HDL代码。最后用这两者的同一激励输入,输出对比,无误就OK了

⑷ 如何用fpga实现算法的硬件加速

首先,利用传统的软件技巧来优化算法,然后将其转向定制指令以加速算法。我们将讨论不同实现方法的性能比较和折衷。
CRC算法可用来校验数据在传输过程中是否被破坏。这些算法很流行,因为它们具有很高的检错率,而且不会对数据吞吐量造成太大影响,因为CRC校验位被添加进数据信息中。但是,CRC算法比一些简单的校验和算法有更大的计算量要求。尽管如此,检错率的提高使得这种算法值得去实施。
一般说来,发送端对要被发送的消息执行CRC算法,并将CRC结果添加进该消息中。消息的接收端对包括CRC结果在内的消息执行同样的CRC操作。如果接收端的结果与发送端的不同,这说明数据被破坏了。
CRC算法是一种密集的数学运算,涉及到二元模数除法(molo-2 division),即数据消息被16或32位多项式(取决于所用CRC标准)除所得的余数。这种操作一般通过异或和移位的迭代过程来实现,当采用16位多项式时,这相当于每数据字节要执行数百条指令。如果发送数百个字节,计算量就会高达数万条指令。因此,任何优化都会大幅提高吞吐量。
代码列表1中的CRC函数有两个自变量(消息指针和消息中的字节数),它可返回所计算的CRC值(余数)。尽管该函数的自变量是一些字节,但计算要逐位来执行。该算法并不高效,因为所有操作(与、移位、异或和循环控制)都必须逐位地执行。
列表1:逐位执行的CRC算法C代码。
/*
* The width of the CRC calculation and result.
* Modify the typedef for a 16 or 32-bit CRC standard.
*/
typedef unsigned char crc;
#define WIDTH (8 * sizeof(crc))
#define TOPBIT (1 << (WIDTH - 1))
crc crcSlow(unsigned char const message[], int nBytes)
{
crc remainder = 0;
/*
* Perform molo-2 division, a byte at a time.
*/
for (int byte = 0; byte < nBytes; ++byte)
{
/*
* Bring the next byte into the remainder.
*/
remainder ^= (message[byte] << (WIDTH - 8));
/*
* Perform molo-2 division, a bit at a time.
*/
for (unsigned char bit = 8; bit > 0; "bit)
{
/*
* Try to divide the current data bit.
*/
if (remainder & TOPBIT)
{
remainder = (remainder << 1) ^ POLYNOMIAL;
}
else
{
remainder = (remainder << 1);
}
}
}
/*
* The final remainder is the CRC result.
*/
return (remainder);
}
1.传统的软件优化
图3:带CRC外围电路和DMA的系统模块示意图。
让我们看一下如何利用传统的软件技巧来优化CRC算法。因为CRC操作中的一个操作数,即多项式(除数)是常数,字节宽CRC操作的所有可能结果都可以预先计算并存储在一个查找表中。这样,通过一个读查找表动作就可让操作按逐个字节执行下去。
采用这一算法时,需要将这些预先计算好的值存储在存储器中。选择ROM或RAM都可以,只要在启动CRC计算之前将存储器初始化就行。查找表有256个字节,表中每个字节位置包含一个CRC结果,共有256种可能的8位消息(与多项式大小无关)。
列表2示出了采用查找表方法的C代码,包括生成查找表crcInit()中数值的代码。
列表2:采用查找表方法的CRC算法C代码。
crc crcTable[256];
void crcInit(void)
{
crc remainder;
/*
* Compute the remainder of each possible dividend.
*/
for (int dividend = 0; dividend < 256; ++dividend)
{
/*
* Start with the dividend followed by zeros.
*/
remainder = dividend << (WIDTH - 8);
/*
* Perform molo-2 division, a bit at a time.
*/
for (unsigned char bit = 8; bit > 0; "bit)
{
/*
* Try to divide the current data bit.
*/
if (remainder & TOPBIT)
{
remainder = (remainder << 1) ^ POLYNOMIAL;
}
else
{
remainder = (remainder << 1);
}
}
/*
* Store the result into the table.
*/
crcTable[dividend] = remainder;
}
} /* crcInit() */
crc crcFast(unsigned char const message[], int nBytes)
{
unsigned char data;
crc remainder = 0;
/*
* Divide the message by the polynomial, a byte at a time.
*/
for (int byte = 0; byte < nBytes; ++byte)
{
data = message[byte] ^ (remainder >> (WIDTH - 8));
remainder = crcTable[data] ^ (remainder << 8);
}
/*
* The final remainder is the CRC.
*/
return (remainder);
} /* crcFast() */
整个计算减少为一个循环,每字节(不是每位)有两个异或、两个移位操作和两个装载指令。基本上,这里是用查找表的存储空间来换取速度。该方法比逐位计算的方法要快9.9倍,这一提高对某些应用已经足够。如果需要更高的性能,可以尝试编写汇编代码或增加查找表容量以挤出更多性能来。但是,如果需要20、50甚至500倍的性能提高,就要考虑采用硬件加速来实现该算法了。
表1:各种规模的数据模块下CRC算法测试比较结果。
2.采用定制指令方法
CRC算法由连续的异或和移位操作构成,用很少的逻辑即可在硬件中简单实现。由于这一硬件模块仅需几个周期来计算CRC,采用定制指令来实现CRC计算要比采用外围电路更好。此外,无须涉及系统中任何其它外围电路或存储器。仅需要一个微处理器来支持定制指令即可,一般是指可配置微处理器。
当在硬件中实现时,算法应该每次执行16或32位计算,这取决于所采用的CRC标准。如果采用CRC-CCITT标准(16位多项式),最好每次执行16位计算。如果使用8位微处理器,效率可能不太高,因为装载操作数值及返回CRC值需要额外的周期。图2示出了用硬件实现16位CRC算法的内核。
信号msg(15..0)每次被移入异或/移位硬件一位。列表3示出了在64KB数据模块上计算CRC的一些C代码例子。该实例是针对Nios嵌入式处理器。
列表3:采用定制指令的CRC计算C代码。
unsigned short crcCompute(unsigned short *data_block, unsigned int nWords)
{
unsigned short* pointer;
unsigned short word;
/*
* initialize crc reg to 0xFFFF
*/
word = nm_crc (0xFFFF, 1); /* nm_crc() is the CRC custom instruction */
/*
* calculate CRC on block of data
* nm_crc() is the CRC custom instruction
*
*/
for (pointer = data_block; pointer < (data_block + nWords); pointer ++)
word = nm_crc(*pointer, 0) return (word);
}
int main(void)
{
#define data_block_begin (na_onchip_memory)
#define data_block_end (na_onchip_memory + 0xffff)
unsigned short crc_result;
unsigned int data_block_length = (unsigned short *)data_block_end - (unsigned short
*)data_block_begin + 1;
crc_result = crcCompute((unsigned short *)data_block_begin, data_block_length);
}
采用定制指令时,用于计算CRC值的代码是一个函数调用,或宏。当针对Nios处理器实现定制指令时,系统构建工具会生成一个宏。在本例中为nm_crc(),可用它来调用定制指令。
在启动CRC计算之前,定制指令内的CRC寄存器需要先初始化。装载初始值是CRC标准的一部分,而且每种CRC标准都不一样。接着,循环将为数据模块中的每16位数据调用一次CRC定制指令。这种定制指令实现方式要比逐位实现的方法快27倍。
3.CRC外围电路方法
如果将CRC算法作为硬件外围电路来实现,并利用DMA将数据从存储器转移到外围电路,这样还可以进一步提高速度。这种方法将省去处理器为每次计算而装载数据所需要的额外周期。DMA可在此外围电路完成前一次CRC计算的时钟周期内提供新的数据。图3示出了利用DMA、CRC外围电路来实现加速的系统模块示意图。
在64KB数据模块上,利用带DMA的定制外围电路可获得比逐位计算的纯软件算法快500倍的性能。要知道,随着数据模块规模的增加,使用DMA所获得的性能也随之提高。这是因为设置DMA仅需很少的开销,设置之后DMA运行得特别快,因为每个周期它都可以传递数据。因此,若只有少数字节的数据,用DMA并不划算。
这里所讨论的所有采用CRC-CCITT标准(16位多项式)的算法都是在Altera Stratix FPGA的Nios处理器上实现的。表1示出了各种数据长度的测试比较结果,以及大致的硬件使用情况(FPGA中的存储器或逻辑单元)。
可以看出,算法所用的硬件越多,算法速度越快。这是用硬件资源来换取速度。

⑸ 数字信号处理算法及其FPGA 实现与操作系统

这个要看你以后的工作方向,如果你只搞硬件算法,那么当然不会用到操作系统。但对于一个从事电子待业的人来说,嵌入式操作系统无论如何都是要了解。人所拥有的时间,足够学会一切我们想学的知识,要相信自己,不要浮燥。
Good luck!

⑹ 学习fpga需要多久多少程度才能搞到图像处理和图像算法

FPGA范围比较广,从编程到制版到调试到生产都可以算到里面。既然你是想搞算法,我就帮你尽量跳过FPGA费时费力不出成绩的底层钻研阶段。
如果你只是想做算法而不是做应用,只需要了解FPGA的优势和实现原理,10-30天学习FPGA基础语法,这部分跟C比较相似应该能很快入门,这时候你差不多就了解FPGA跟CPU的区别和优势了,然后把重点放在算法研究上。根据算法复杂度研究时间不定。
比如图像处理,FPGA的优势在于可以一个时钟周期处理多个点或者矩阵,这时候你的算法就要偏向于怎么让不同点或者矩阵之间的运算尽量独立没有前后相关性。速度上4Ghz的CPU一次处理16个点速度就是64G点每秒,FPGA看资源如果一次可以处理1000点,200MHZ的速度就是200G点每秒,这图像处理速度的优势就出来了。而且CPU可能还要跑系统还有宕机风险,FPGA说多快就多快,稳定高效能长时间运行。
之前我们做4K视频的采集和预处理,FPGA很轻松就实现了。设计的时候最好找个高手听一下你的设计方案,帮忙做一下时序约束和PipeLine规划,这样保证你的算法尽量稳定,或者干脆点你算法完成直接找人给你写代码,你把代码看懂之后再慢慢调参数就行了。
直接根据自己需求买个成品板卡,这样上面的外接器件什么的都有现成example可以使用,比如DDR控制、视频输入输出、引脚约束这之类的,你可以直接用板卡资料,不需要浪费时间去自己调试,专心做算法。

⑺ 使用fpga完成数字信号处理算法,需要解决哪些问题

你是不是刚听说“
fpga完成数字信号处理算法
”这个名词,就跑过来让人给你科普?

⑻ fpga算法 dsp算法 加密解密算法 三者有什么区别

对搞FPGA硬件没什么帮助,因为纯粹是算法,只会应用到一些和算法相关的,如噪声源等,就FPGA这方面来说,所需要知识不多。顶多就是熟悉代码以及模块之间的数据流配合
加解密在FPGA上都是可以实现的,但是FPGA对于算法处理也不是很在行,所以更多的深层次算法,还是要在DSP上做,和FPGA上做算法,本质上没有太大的区别,只是实现方式不同而已,核心还是算法,而不是工具。

目前做算法方面,DSP还是主流,但是FPGA也不少了

⑼ 用fpga做图像处理 是FPGA重要还是图像处理的算法重要

首先,建议把数电的基础看下,侧重于基本的逻辑元器件,尤其是锁存器,触发器等概念给清晰了。这个因为学过,去图书管上两三个星期的晚自习就可以了。主要是为了强化下数字逻辑思维。
然后,学习verilog语法,学的过程中每天坚持练习编写code,verilog比较好学,入门一个月就够了。
以上两件事是属于基础,你一个月的时间就够了。
最后,你可以看你的图像处理算法了,算法是需要研究查找各种资料的,研究起来时间比较多,也比较枯燥,这时候你可以对你每天的时间进行划分,一段时间研究算法,一段时间看FPGA设计的相关书籍,关键是要自己编代码,在这过程中再有哪些数电或基础知识不清楚再去查找就是了。
记住练习编程要坚持,遇到问题要多问,多研究,当你算法研究到心里有谱的时候,你的rtl编码能力也就差不多了,就可以编写你的图像处理算法了。
Note:研究生的时间过的很快,但是时间也不端,尽量合理利用时间,学习东西要有调理,先学什么后学什么自己多想想,然后按照计划执行就行。

⑽ 用FPGA实现图像处理算法有前途吗

有,很多时候使用者不希望图像处理占用大量的CPU时间,如果用FPGA实现图像处理,那么就可以将图像处理部分在前端的数字芯片上实现,也就是可以在摄像机上完成很多工作

热点内容
java文件流上传文件 发布:2024-11-15 05:24:02 浏览:147
linux安装so 发布:2024-11-15 05:22:29 浏览:581
九游版冒险王2适合安卓哪个版本 发布:2024-11-15 05:12:33 浏览:600
iphonexsmax怎么连接服务器 发布:2024-11-15 05:11:46 浏览:775
长江存储校招 发布:2024-11-15 05:11:01 浏览:966
oraclesql函数大全 发布:2024-11-15 05:10:00 浏览:465
form多文件上传 发布:2024-11-15 05:09:21 浏览:913
云服务器搭建网站哪家好 发布:2024-11-15 04:57:34 浏览:512
什么游戏最好玩又不吃配置 发布:2024-11-15 04:56:50 浏览:456
挤黑痘解压 发布:2024-11-15 04:51:13 浏览:733