求期望算法
1. 数学数学期望有哪些计算方法
1。根据定义,E(x)=∑p(x)*x
(离散情况)
∫f(x)xdx
(连续情况)
2。根据公式,当你知道随机变量具体服从什么分布的时候,直接用现成的期望公式。
2. 数学期望。。。
C有含义的,是概率中的一种
有相应的计算公式的
3. 连续型随机变量期望计算
【俊狼猎英】团队为您解答~
你的思路和算法都是对的,最后一步就是求定积分了
原函数是2x^3/3,
积分上下限0,1代入原函数相减就得到2/3
4. 数学期望 简便算法
10/3
次数与几率想成就是
5. 期望值怎么算
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)
X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。)
如果X是连续的随机变量,存在一个相应的概率密度函数(也就是说一个随机变量的输出不会影响另一个随机变量的输出。)
例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以将相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。
考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况37种”,结果约等于-0.0526美元。
也就是说,平均起来每赌1美元就会输掉5美分,即美式轮盘以1美元作赌注的期望值为 负0.0526美元。
6. 什么是数学期望如何计算
数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
7. 几种常见数学期望的计算方法
期望=预计收益*收益可能性。如投资20元,有50%收益100元,50%收益0元,那么期望收益=100*50%+0*50%-20=30元。
8. 数学期望怎么求
离散型随机变量的一切可能的取值xi与对应的概率P(=xi)之积的和称为的数学期望(设级数绝对收敛),记为E。如果随机变量只取得有限个值。随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广,类似加权平均。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个, 则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 连续型 连续型随机变量X的概率密度函数为f(x),若积分: 绝对收敛,则称此积分值为随机变量X的数学期望,记为: [编辑本段]数学期望的来由 早在17世纪,有一个赌徒向法国着名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。录比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 [编辑本段]数学期望的定义定义1: 按照定义,离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E.如果随机变量只取得有限个值:x,、瓜、兀 源自: 挡土墙优化设计与风险决策研究——兼述黄... 《南水北调与水利科技》 2004年 劳道邦,李荣义 来源文章摘要:挡土墙作为一般土建工程的拦土建筑物常用在闸坝翼墙和渡槽、倒虹吸的进出口过渡段,它的优化设计问题常被忽视。实际上各类挡土墙间的技术和经济效益差别是相当大的。而一些工程的现实条件又使一些常用挡土墙呈现出诸多方面局限性。黄壁庄水库除险加固工程的混凝土生产系统的挡土墙建设在优化设计方面向前迈进了一步,在技术和经济效益方面取得明显效果,其经验可供同类工程建设参考。 定义2: 1 决定可靠性的因素常规的安全系数是根据经验而选取的,即取材料的强度极限均值(概率理论中称为数学期望)与工作应力均值(数学期望)之比 [编辑本段]计算随机变量的数学期望值 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 我们举个例子,比如说有这么几个数: 1,1,2,5,2,6,5,8,9,4,8,1 1出现的次数为3次,占所有数据出现次数的3/12,这个3/12就是1所对应的频率。同理,可以计算出f(2) = 2/12,f(5) = 2/12 , f(6) = 1/12 , f(8) = 2/12 , f(9) = 1/12 , f(4) = 1/12 根据数学期望的定义: E(X) = 1*f(1) + 2*f(2) + 5*f(5) + 6*f(6) + 8*f(8) + 9*f(9) + 4*f(4) = 13/3 所以 E(X) = 13/3, 现在算这些数的算术平均值: Xa = (1+1+2+5+2+6+5+8+9+4+8+1)/12 = 13/3 所以E(X) = Xa = 13/3
9. 求举例说明数学期望的计算方法
期望=预计收益*收益可能性。
如投资20元,有50%收益100元,50%收益0元,那么期望收益=100*50%+0*50%-20=30元。
10. 概率题求出数学期望后怎么求方差
楼主你好
方差有两种求法
第一种:根据定义求
设方差=Var(X)
则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)
第二种:用公式求
方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2
这两种算法的结果是一样的
希望你满意