切削数据库
❶ 切削用量的选择原则是什么
三要素:切削速度、进给量和背吃刀量(切削深度)。
选择原则:
(1) 机床转速
(2) 刀具规格
(3) 工件尺寸
(4)切削液浓度
与某一工序的切削用量有密切关系的刀具寿命(见金属切削原理),一般分为两类:最低经济寿命和最高生产率寿命。根据前者选择的切削参数称为最小成本切削参数;根据后者选择的切削参数称为最大生产率切削参数,通常在生产任务紧急时使用。
(1)切削数据库扩展阅读:
切削用量的确定:
在数控编程中,编程人员必须确定各工序的切削参数,并以指令的形式写入程序。切削参数包括主轴速度、进给速度和进给速度。对于不同的加工方法,需要选择不同的切削参数。
选择切削参数的原则是保证零件的加工精度和表面粗糙度,充分发挥刀具的切削性能,保证合理的刀具耐用度,充分发挥机床的性能,最大限度地提高生产率和降低成本。
❷ hypermill刀具数据库不能打开,请在hypermill设置中选取正确的数据!
刀具就是上面这位说的,这几个地方要注意的,,,
你图片,32.00 这个是填 刀具的直径
45.00 这个是填:刀具角度的一半,,,你买的刀具上面应该有这个数据的
0.200 这个是填:刀具的刀刃大小,, 这具买刀具时上面也有的,
这个一般是1.0 0.5 0.3 0.2 0.1这几种,这个一般看文件做的,相差这一点点,做东西看不出来的,主要是刀能进去,能出路径就可以
切削深度设定: 要比你下刀深度要大,不然出不了文件 ,这个是深度保护,每一次下刀只能下多少
解决方案2:
你这个是4.2版本的~
【Type3里面各种刀具参数如何设置?】(图1)
追问兄弟,那个90度的,后面应该是45吧? 另外,切削深度是否就是下刀深度?
Type3里面各种刀具参数如何设置?
答:刀具就是上面这位说的,这几个地方要注意的,,, 你图片,32.00 这个是填 刀具的直径 45.00 这个是填:刀具角度的一半,,,你买的刀具上面应该有这个数据的 0.200 这个是填:刀具的刀刃大小,, 这具买刀具时上面也有的, 这个一般是1.0 0.5 0...
❸ 高速切削技术都有什么概念
高速切削是一个相对概念,并且随着时代的进步而不断变化。一般认为高速切削或超高速切削的速度为普通切削加工的5~10倍。可以从不同的角度对切削速度进行划分。随着切削速度的提高,切削力会降低15~30%以上,切削热量大多被切屑带走,加工表面质量可提高1~2级,生产效率的提高,可降低制造成本20%~40%。所以高速切削意义不仅仅是得到较高的表面切削质量。
国外对高速切削技术的研究比较早,可以追溯到20世纪60年代。目前已应用于航空、航天、汽车、模具等多种工业中的钢、铸铁及其合金、铝、镁合金、超级合金(镍基、铬基、铁基和钛基合金)及碳素纤维增强塑料等复合材料的加工,其中以加工铸铁和铝合金最为普遍。加工钢和铸铁及其合金可达到500~1500m/min,加工铝及其合金可达到3000~4000m/min。国在高速切削领域方面的研究起步较晚,20世纪80年代才开始研究高速硬切削。刀具以高速钢、硬质合金为主,切削速度大多在100~200m/min,高速钢在40m/min以内。切削水平和加工效率都比较低。
近年来,虽然对高速切削技术已有比较深的认识,进口的部分数控机床和加工中心中也能达到高速切削加工的要求,但由于刀具等原因,高速切削技术应用也较少。目前主要在模具、汽车、航空、航天工业应用高速切削技术稍多,一般采用进口刀具,以加工铸铁和铝合金为主。
高速切削技术主要分为两方面,一方面是高速切削刀具技术,包括刀具材料、刀柄和刀夹系统、刀具动平衡技术、高速切削数据库技术、检测与监控系统等;另一方面是高速数控机床技术,包括机床整机结构的静动热态特性、电主轴、直线电机进给系统、数控与伺服系统的高速及高加速度性能、轴承润滑系统、刀具冷却系统等。
❹ 高速切削工艺数据库管理系统的研究与开发 谁帮我查下期刊 我邮箱[email protected]不胜感激
昆明理工大学 2006 中国优秀硕士学位论文全文数据库
已发送
❺ 百超6.8编程软件cnc数据库路径怎样改
数控技术论文本科毕业论文(设计)22009-10-2222:39第一章:数控技术和PRO/E软件技术1.1数控技术1.1.1数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(it、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面。(一)、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(cirp)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。从emo2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国cincinnati公司的hypermach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国dmg公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。在可靠性方面,国外数控装置的mtbf值已达6000h以上,伺服系统的mtbf值达到30000h以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。(二)、5轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。在emo2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国dmg公司展出dmuvoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由cnc系统控制或cad/cam直接或间接控制。(三)、智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的ngc(thenextgenerationwork-station/machinecontrol)、欧共体的osaca()、日本的osec(),中国的onc(opennumericalcontrolsystem)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。网络化数控装备是近两年国际着名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些着名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在emo2001展中,日本山崎马扎克(mazak)公司展出的“cyberproctioncenter”(智能生产控制中心,简称cpc);日本大隈(okuma)机床公司展出“itplaza”(信息技术广场,简称it广场);德国西门子(siemens)公司展出的openmanufacturingenvironment(开放制造环境,简称ome)等,反映了数控机床加工向网络化方向发展的趋势。1.2FANUC数控系统数控加工中心机床基础知识在这一节中我们了解FANUC数控加工中心作的一些基础知识。由于内容的要求,我们只作简要的讲解。1.2.1坐标系/对刀点/换刀点坐标系:主要坐标系分为机床坐标系和工件坐标系,前者由厂家设定,工件坐标系:又叫编程坐标系,用来确定工件各要素的位置。刀点:主要分为对刀点和换刀点,前者刀具相对工件运动的起点(又叫程序起点或起刀点)。后者是换刀的位置点,在加工中心有换刀的程序,在加工零件的时候,我们只要调刀就可以执行。1.2.2常用基本指令在校徽的加工过程中,我们要用到这些基本指令:进给功能字F用于指定切削的进给速度。主轴转速功能字S用于指定主轴转速。刀具功能字T用于指定加工时所用刀具的编号。辅助功能字M用于指定数控机床辅助装置的开关动作。准备功能G指令,用于刀具的运动路线。如下表1.1是G代码表。表1.1G功能字含义表(FANUC—OM系统)G00快速移动点定位G70粗加工循环G01直线插补G71外圆粗切循环G02顺时针圆弧插补G72端面粗切循环G03逆时针圆弧插补G73封闭切削循环G04暂停G74深孔钻循环G17XY平面选择G75外径切槽循环G18ZX平面选择G76复合螺纹切削循环G19YZ平面选择G80撤消固定循环G32螺纹切削G81定点钻孔循环G40刀具补偿注销G90绝对值编程G41刀具半径补偿—左G91增量值编程G42刀具半径补偿—右G92螺纹切削循环G43刀具长度补偿—正G94每分钟进给量G44刀具长度补偿—负G95每转进给量G49刀具长度补偿注销G96恒线速控制G50主轴最高转速限制G97恒线速取消G54~G59加工坐标系设定G98返回起始平面GG65用户宏指令G99返回R平面1.2.3编程方式在编程的过程中,有两种编程方式:一种是手工编程;另一种是数控自动编程,自动数控编程又分为:图形数控自动变成、语言数控自动编程和语音数控自动编程三种。手工编程的特点是耗费时间长,容易出现错误,无法胜任复杂形状零件的编程。国外资料统计,手工编程时间与机床实际加工时间平均比是30/1。20%─30%机床不能开动的原因是由于手工编程的时间较长引起的。在这节我们以FANUC系统的编程知识来讲解,在这个设计中,我们是以图形数控自动编程来的。手工编程过程总结:程序的输入:打开程序保护锁,按下PROG键,方式开关选择到编辑状态,DIR检查内存占用情况,输入OXXXX,按INSERT键(报警的话,说明该文件名存),按RESET复位,重新输入文件名。当我们建立了文件名后,文件名要单独占一行,每行的结束要用“;”(按EOB,在按INSERT插入),如果顺序号没有出来,我们可以把顺序号的功能打开(按OFFSETSETTING键,选择SETTING,移动光标键,下面有个顺序号,参数是“0”,说明没有顺序号,所以我们将它改为“1”,打如INPUT,注意只有在MDI方式下才能改参数,否则要报警),进行程序的输入。程序比较长的时候,我们可以将程序号的间隔调小,操作如下:MDI方式下按OFFSETSETTING键,按PAGE,找到“10”所在的参数号,将“10”改为“5”,按INPUT键。程序输入完后,我们可以进行程序的修改:替换(在键盘缓冲区输入要替换的字符,按下ALTER键),删除(删除单个字符,光标移动到要删除的字符按DELETE;删除一段,将光标移动到要删除的那一段上),程序输入完了后锁上。程序的检索,例如检索O313按下面步骤进行操作方式在编辑状态下—按PRGRM(进入程序画面)—输入查找的程序号O313—按箭头向下的光标键找O313程序号。程序的删除,例如删除O313按下面步骤进行:操作方式在编辑状态下—打开程序保护锁—按PRGRM(进入程序画面)—输入删除的程序号O313—按箭头向下的光标键找O313程序号—键入删除的程序号O313—按DELET—操作完毕、锁上程序保护锁—按功能软件上的LID查看O313程序是否在程序例表中。1.2.4对刀对刀的方法直接影响工件的加工精度。所以对于不同的加工零件,我们要选择不同的对刀方法。X和Y向对刀,对于圆柱孔(或圆柱面)零件时:(1)我们采用杠杆百分表(或千分表)对刀,这种对刀方法精度高,但是比较麻烦。(2)采用寻边器对刀,对于精度不太高,比较直观。X和Y向对刀,当对刀点为互相垂直直线的交点时:(1)采用刀具试切对刀。(2)采用寻边器对刀,精度高。在Z向对刀,Z向对刀数据与刀具在刀柄上的装夹长度及工件坐标系的Z向零点位置有关,它确定工件坐标系的零点在机床坐标系中的位置。加工中心采用长度补偿来做。为了损伤工件表面,在本设计中我们采用采用对刀杆对刀。移动机床将刀杆分别从X、Y慢慢靠近工件,若X方向显示的是X1,Y方向显示的是Y1。再反方向得到X2,Y2则分别记下此数据。我们采用G54坐标系,记下X、Y的值,按POS键,输入到G54坐标系中。程序原点X、Y的计算方法如下:X=(X1-X2)/2Y=(Y1-Y2)/2Z轴偏值:将株洲移动到工件的上表面,并与工件有微量的切削,纪录此值。按SYSTEM→SFF/SET→偏值,把Z轴的工件坐标值输入到对应的刀号的刀偏表长度补偿中。把计算的结果输入工件偏置画面中的G54中。1.2.5刀具长度补偿设置加工中心上使用的刀具很多,每把刀具的长度和到Z坐标零点的距离都不相同,这些距离的差值就是刀具的长度补偿值,在加工时要分别进行设置,并记录在刀具明细表中,以供机床操作人员使用。一般有两种方法:1、机内设置这种方法不用事先测量每把刀具的长度,而是将所有刀具放入刀库中后,采用Z向设定器依次确定每把刀具在机床坐标系中的位置,具体设定方法又分两种。(1)第一种方法将其中的一把刀具作为标准刀具,找出其它刀具与标准刀具的差值,作为长度补偿值。具体操作步骤如下:①将所有刀具放入刀库,利用Z向设定器确定每把刀具到工件坐标系Z向零点的距离,如图1.1所示的A、B、C,并记录下来;②选择其中一把最长(或最短)、与工件距离最小(或最大)的刀具作为基准刀,如图5-2中的T03(或T01),将其对刀值C(或A)作为工件坐标系的Z值,此时H03=0;③确定其它刀具相对基准刀的长度补偿值,即H01=±│C-A│,H02=±│C-B│,正负号由程序中的G43或G44来确定。④将获得的刀具长度补偿值对应刀具和刀具号输入到机床中。图1.11.2.6刀具半径补偿设置进入刀具补偿值的设定页面,移动光标至输入值的位置,根据编程指定的刀具,键入刀具半径补偿值,按INPUT键完成刀具半径补偿值的设定。操作如下:按SYSTEM→SFF/SET→输入刀具的半径补偿值。1.2.7机床操作面板的简单介绍下图1.2操作面板是FANUC—0I系统的操作面板,图1.3是操作棉板的功能键板。图1.2图1.3显示现在机床坐标的位置(绝对坐标、相对坐标、相对坐标)。程序功能键,显示编辑的程序或正在运行的程序。刀具补偿表,设定工件坐标系,参数等。换档键,在编辑中进行字母和数字的切换。取消键,用于删除已输入存储器里的最后一个字符。输入参数和补偿值。程序的删除。程序的插入,在程序的修改过程中经常用到。替换键,程序的编辑、修改。图形显示键,观察刀具在加工过程中的图形显示。报警信息显示按钮。页面键有两个,用来进行页面的前/后翻。机床参数键。1.3PRO/E软件技术1.3.1PRO/E3.0软件的介绍及其安装Pro/E(Pro/Engineer操作软件)是美国参数技术公司(,简称PTC)的重要产品。在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。Pro/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决牲的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。2006年4月发布的Pro/ENGINEERWildfire3.0(野火3.0),它将Pro/E的版本上升到了前所未有的高度。它相对与以前的版本,在功能上更加的强大,更加适应“人本”性。Pro/E3.0安装操作如下:1.运行虚拟光驱,再将BIN文件装入光驱,自动运行安装程序(下载版必须由虚拟光驱运行)。2.选择国家:中国。3.接受协议。4.开始安装服务器。5.填入你本机的ID(ID如上图遮盖处的PTC主机ID,区分大小写)点crack文件中的generate,得到license.dat文件,拷贝文件到你找得到的地方。6.指定安装目录和许可证,之后点安装按钮。7.上一步安装完成后,重新启动电脑后。查看服务器是否运行(控制面板>管理工具>服务),下图所示即为已经运行(注:到了这里,这个服务一定要成功并保持运行,否则安装好了也无法使用)。8.再次运行安装程序,选择安装Pro/ENGINEER。9.选择安装语种,但中文默认是已经安装的。注意:野火3.0中已经不再使用lang=chs也能显示中文(建议安装所有模块,除了帮助文件,否则很多模块无法运行)。10.填写主机名,这一步与2.0是不同的。11.点击下一步,一直安装到提示插入第2张光盘,第3张光盘。安装完成后。1.3.2在PRO/E中校徽的特征建模贵大校徽如下图1.4所示图1.4(一)、在Pro/ENGINEERWidfire中单击菜单栏中的新建按钮,打开“新建文件”对话框,文件类型选择为“零件”,子类型选择“实体”,取消使用默认模板,单击“确定”按钮,在“名称”对话框中选择“mmns-part-solid”单击确定按钮后进入零件设计模式。(二)、单击特征工具栏中的拉伸按钮,系统弹出“拉伸”特征操控板,在操控板中打开“放置”上滑面板,单击“定义”按钮,弹出“草绘”对话框,选择TOP,RIGHT分别作为“草绘”平面和参考平面。单击“确定”进入“草绘”界面。(三)、绘制一个200200的正方形,单击确定按钮回到“拉伸”特征操控板,输入拉伸高度为7,单击确定按钮得到一个正方体。(四)、在主菜单中选择“视图(V)→颜色和外观”在外观编辑器中选择一种颜色,在“指定”按钮中选择“曲面”指定长方体的前面单击确定,然后选择外观编辑器中的“映射→贴花”在下一层菜单中的“外观放置”中选择“”按钮来增加“纹理”,然后双击增加的图片,单击“关闭”再单击“关闭”完成“贴花”的命令如图1.5所示:图1.5(五)、在菜单栏中单击拉伸按钮,系统弹出“拉伸”特征操控板,在操控板中打开“放置”上滑板,单击“定义”按钮,选择长方体的TOP和RIGHT分别作为“草绘”平面和参考平面。单击“确定”进入“草绘”界面。(六)、在“草绘”状态下单击样条曲线按钮,用样条曲线去逼近中间贵字图形的轮廓。进行修改,达到满意后,单击完文字按钮,选取行的第二点,确定文本高度和方向,同时出现文本框如图1.6,在输入区中输入“GUIZHOUUNIVERSITY”,选择沿曲线放置,选择曲线圆,单击完成,进行修改,达到满意后,用同样的方法输入“贵州大学”,然后单击样条曲线按钮,用样条曲线去逼近中间文字图形的轮廓,进行修改,达到满意后,如图1.7保存XIAOHUI.prt。成后单击确定按钮,回到上一级对话框输入拉伸深度为2,单击确定按钮完成建模。最后的三维图形如1.8图:图1.6图1.7图1.81.4PRO/NC模块简介PRO/E是由美国参数科技公司(PTC)开发,是一个全方位的三维产品开发综合性软件,集成了零件设计、产品、装配、模具开发、数控加工、钣金设计、铸造件设计、造型设计、自动测量、机构仿真、应力分析、电路布线等功能模块与一体。广泛应用与电子、机械、模具、工艺设计、汽车、航天、服装等行业。是当今世纪最为流行的CAD/CAM软件之一。PRO/NC模块能生成驱动数控机床加工PRO/E零件所必须的数据和信息,能够生成数控加工的全过成。PRO/E系统的全相关统一数据库能将设计模型变化体现到加工信息当中去,利用它所提供的工具将设计模型处理成ASCII码刀位数据文件,这些文件经过后处理变成数据加工数据。PRO/NC生成的数控加工文件包括刀位数据文件、刀具清单、操作报告、中间模型、机床控制文件等。PRO/NC模块应用范围比较广,包括数控车、数控铣、加工中心等。下表1.2是具体的应用范围。表1.2模块名称应用范围PRO/ENC—车床一个转塔车床及钻孔加工二个转塔车床及钻孔加工PRO/ENC—铣床二轴半铣床加工3~5轴铣床加工PRO/ENC—铣削/车削2~5轴车铣综合加工PRO/ENC—Wendm2轴或4轴线切割加工1.5数控自动加工的加工流程PRO/NC进行数控加工时,先用PRO/E的造型模块将零件的几何图形绘制在计算机上,形成零件的设计模型,然后直接调用PRO/E的数控编程模块,定义操作,选择加工方法、定义刀具、加工参数和加工区域,进行刀具轨迹处理,并由计算机的自动对零件加工轨迹的各个节点进行计算和处理。从而生成刀位数据文件;经过相应的后置处理,自动生成数控加工程序,并在计算机上动态的显示其刀具的加工轨迹如图1.9流程:设计模型→制造模型←毛坯夹具设置→制造设置数据←机床数据和刀具数据↓操作设置↓定义NC工序↓生成刀位数据文件↓后置处理↓动态仿真↓→→→↓↑↓↓↓修改←N←正确→Y→NC机床图1.91.6校徽在Pro/NC中的编程实例在建立好模型的基础上,利用Pro/NC进行数控加工的自动编程。下面的实例将对加工的一般过程进行说明:1.在Pro/ENGINEERWidfire中打单击系统工具中新建按钮,打开“新建文件”对话框,选择文件类型为“制造”,子类型选择“NC组件”,取消使用默认模板,单击“确定”按钮,在“文件选项”对话框中选择“mmns-mfg-nc”单击确定按钮后进入制造加工模式。2.在【菜单管理器】中选择→→,选择设计模XIAOHUI.prt。在系统弹出的【元件放置】对话框,选择,在缺省的状态下放置参考模型。3.在【菜单管理器】中选择→→,在消息提示区中输入工件的名称XH,单击在,在创建特征下拉菜单中单击,在实体选向中单击,在放置选向中,单击放置,再单击定义,系统弹出草绘对话框如图1.10,选择如图1.11的平面来作为参照。单击,按做CTRL,选择如图1.12所示的平面作为参照平面,单击参照对话框的关闭。单击,画210mm210mm的矩形。单击,在框中输入10.00,,单击和,完成的图形如图1.13。图1.10图1.114.在【菜单管理器】中选择【制造设置】命令,系统弹出如图1.14所示。同时弹出操作设置对话框,如图1.15。用来对机床、刀具、机床坐标系和退刀平面的设置。图1.11图1.12图1.13图1.145.单击对话框中的图标,再单击,选择。出现刀具设置对话框,如图1.16所示。在刀具设置对话框中输入刀具的材料、长度等参数。图1.15图1.16设置好后单击,单击。加工零点设置:单击加工零点处的,选择坐标,系,拾取模型于其内创建坐标系,选择整个图形,图形出现红色线条,这时出来坐标对话框,按住CTRL选择如图1.17的三个面创建坐标,单击,根据具体的机床进行设置。设置后如下图1.18所示。1.17图1.186.退刀面设置,单击退刀曲面的,在退刀选取中单击,输入Z深度,如图1.19,图1.19单击,在操作设置对话框中单击,则操作OP010已经成功创建。7.参数设置,在【菜单管理器】中选择→→,单击,序列设置如图1.20,单击刀具设置对话框的。在制造参数下拉菜单中选择,完成设置如图1.21所示。图1.20图1.21单击→→→→→,单击。在序列坐标中单击,选取坐标系。重复对刀面的设置。8.创建加工窗口,在定义窗口的下拉菜单中选择,在消息提示区输入窗口的名称,单击,在铣削窗口下拉菜单中选择,选取垂直曲面、边或顶点,截面将相对于它们进行尺寸标注和约束,选择要创建窗口的图形,选择如下参照,单击关闭。单击,画加工窗口,204mm204mm的矩形。单击,单击加工窗口的。单击→。9.轨迹演示,单击,计算CL轨迹,单击图1.22所示。图1.22图1.23选择图1.22中的按钮,则可以见到刀具的走刀路线。
❻ UG中怎样编辑加工数据库
如果学数控建议你学UG
一套针对机床加工编程最完善的解决方案
源于UGS数字化产品开发方案,
NX针对机床程序设计研发出了一套完善的、经过实践检验的系统。NX机械加工采用了领先的前沿技术和先进的加工方法,使制造工程师和NC程序员的效率达到了最佳状态。
生产力和效率达到了最佳状态
运用NX机械加工,各公司可以将他们的NC设计、制造工程和加工方法进行演进和转化,从而大大地减少浪费,显着地提高人力和机械资源的生产力。
设计到制造的一体化
NX机械加工将NX的产品开发方案完全地组成为一个整体。NC程序员可以在相同且统一的系统下直接进行全面设计、装配和工程制图。制造结合性意味着设计可以根据加工工艺情况自动进行改变。运用这套完
整的开发方案,程序员和制造工程师只需要对部件模型进行操作,制作和组装夹具,设置车床路径,甚至可以应用三维加工模拟对整套设备进行模拟
机械加工所包含的全部方案
对机床及其操作的广泛支持 全套加工应用
● 两轴和三轴的铣削 ● 车床路径确认
● 五轴铣削 ● 机床模拟
● 钻孔 ● 后处理程序的构建和编辑
● 车削 ● 方法,流程模板
● 车铣结合 ● 刀具库
● 融合车床 ● 进给量和主轴速度资料
● 线切割加工(EDM) ● 基于特征的加工编程
● 雕刻,刻模 ● 零件和装配建模及编辑
● 基于特征的加工编程 ● 工装,夹具设计
● 高速铣加工 ● 机床建模和运动仿真
● 几何体转换器
● 车间工艺文档输出
● 数据管理
自动化生产力
通过对设计任务先进的自动控制,NX机械加工减少了设计时间和所需的技能水平。NX基于特征的设计,可以直接从零件设计模式自动生成最优化的加工程序。加工模板和特殊方法可以确保更优越和经实践检验加工方法的应用。从而可以保证制成品和加工方法的高质量水平。
模拟仿真确保质量使用NX机械加工软件的公司可以利用其完整的模拟仿真工具,确保程序符合车间首试成功的质量要求,而无须多次试切实验。完整的切削仿真和机床运动模拟可以在NX设计环境中立即进行,不需要独立系统和数据转换。
领先科技的效率
NX加工软件模块的高性能和加工能力可以大大提高生产效率,可以帮助公司应用最新机床和加工技术从而获得最大的利益。NX支持多主轴车铣加工中心,可以免除多台机器的使用、节省工件装卸和运输时间。NX支持高速加工,从而最大化切削性能、切削速度和提高表面光洁度。NX先进的支持多主轴加工编程,可以实现对车铣加工中心的完全控制,使最复杂部件的NX编程速度更快。NX加工应用模块完全集成在NX数字化产品开发方案之中,使产品从设计到制造都保持同步。
经过实践验证的多轴加工技术
多轴加工可以运用较少的装卡操作和步骤,有效率地生产精密复杂的部件,减少成本、浪费和交货时间。高效、精确的多轴加工在参数设置和切割顺序方面需要相当大的机动性。NX成熟的NC处理器、多级控制和用户定义驱动方式均可以满足这些要求。
全面性
NX是最完整和全面的NC编程系统。从数年航空和相关行业开发出来的、经实践验证过的能力使NX可以提供有效、精确的多轴加工。NX有一系列的刀轴控制方法,支持在加工复杂表面时可以精确地控制机床刀轴的运动方式,并且同时可以进行碰撞和干涉检查。
灵活性
NX拥有许多在复杂表面精确定义可控制机床刀路轨迹的机动方法。可变轴铣削附带很多驱动方式和一系列机床刀轴的控制选项。这些都配备了许多工作都必需的碰撞和干涉检查能力。
塑料模和冷冲模模具制造
快速完成
在昨天看来,快速交货也许还是不可能的事情——但是应用NX,你就拥有了更迅速、更有效并且以更低成本实现目标的工具,而且可以保证既定的产品质量。
实现最高效率
NX的加工自动化、最新的机床刀路计算技术和从机床设计到制造的一体化方案可以帮助你在塑料模和冷冲模模具制造方面获得最大的生产力。广泛有效的模具加工能力包括Z高度方向粗加工、半精加工、陡峭和非陡峭区的铣加工、清根加工、精加工和侧壁轮廓铣加工等。面向特征的加工和基于流程的自动化可以大大减少塑料模和冷冲模模具结构编程时间。
高速加工:使硬质材料切削更简便
等体积材料切削
成功的高速铣粗加工在管理机床负载的同时保持着金属材料切削的速度。NX追踪每一刀加工后的残留余量并相应调整机床路径,保证在最短加工时间内获得最好的精铣效果。
在陡峭和平缓区域内获得相同的加工表面效果
半精加工时在陡峭区域内Z方向刀轨之间自动增加机床刀轨,保证和平缓区域有相同精度的切痕,从而确保在精加工操作中切削的一致性
经验证的、集成的加工数据
NX拥有一个可定制化的加工数据库,允许用户管理和使用那些经验证的机床参数,这些参数对应着相关的机床操作,如模具行业典型的模具钢P20的所有加工相关数据。
快速生成机床刀路
最新的Z (Level) 高度铣削软件Rest-Milling可以进行机床刀路的超高速计算,这样就可以设定更小的公差值,确保获得高精度和稳定的Rest-Milling铣削效果。
精细调优的高速铣加工输出
NX机床路径针对对高速设备控制器进行了精细调优。均匀分布的点到点运动、相切圆弧拐角和NURBS(曲线曲面的非均匀有理B样条)输出选项使用户可以根据每个任务的参数匹配不同的方法。
适用于多功能机床的完整解决方案
NX提供了一整套机械加工方案支持最新的多功能机床设备。并不是所有的系统都可以支持车铣加工中心。此外,程序设计通常需要较为复杂的定位、工作坐标系协调和机床刀轴控制。NX具有高度灵活的加工配置,可以满足这些需要。
同步管理控制器对多功能的控制
NX为每个加工功能提供动态的显示,作为一个信道在显示器上显示出来。启动和等待代码控制着每个加工工序的流程。集成的机床模拟仿真可对整个流程进行可视化确认。
多功能机床的刀路轨迹后处理器
每个机床功能均要求有一个具体的后处理程序,然后融合在一个同步输出集合里。NX后处理程序不受CL刀路文件内容的限制,直接和内部的机床路径定义相连接。它可以存取NX机械加工数据库的任何数据,从而可以在后期处理阶段实现自动化决策。
NX后处理器Post Builder
客户和方案的执行者可以用它创建和编辑后处理程序,工作范围从样版配置到自己的特定技术参数。典型设备和控制器配置的标准后处理程序很容易进行编辑。NX也可以创建用作第三方后处理程序输入的CLS文件。
生产力的最大化
一个系统、所有功能
NX涵盖了完整的NC编程和后处理、切削仿真和机床运动模拟功能。此外,其以市场需求为导向的设计和装配软件可用于构建产品、工装和夹具、刀具,同时也可以创建机床的三维模型供模拟使用
通过流程和建立模板实现自动化
为了方便编程员的工作,NX中的机械加工程序对每台机器类型和配置采用了代表典型加工方法的模板。在进行新工作的时候,通过选择和运用模板,许多费时的任务都可以自动应用,具体的设备控制参数可以预设,从而使任务进展速度更快、更简洁并具有可重复性。
机械加工模拟
精确的模拟是优化机床对多部件进行复杂加工编程的基础。NX提供了全套的机床刀路和机床运动模拟,机床运动模拟由后处理代码驱动——并且总是在NX编程环境中运行。
通过编程自动化提高生产力
NC编程中的自动化为获得商业竞争优势提供了机会。自动化使得编程更快,并具有可重复性。它每次都可以产生专业的NC代码。
实践经验自动化
在NX中从设计到加工的全自动化解决方案可以提供特别的商业优势,将最佳实践自动应用于关键编程任务,可以轻松应对变动最频繁的工作。
流程向导
对普通任务的日常运用,公司可以在NX中按照简单、方便的步骤创建自己的流程向导。流程向导可以根据用户的简单选择定义出复杂的软件设置。
流程模板
NX让程序员可以运用规则驱动型预定义的流程和工艺模板,这就使编程任务实现了自动化,同时也缩短了时间,确保应用了理想的加工方法、刀具和工艺,对经验较少的用户有很大帮助。用户可以轻松地创建新的模板或者修改已有的模板。
基于特征的加工编程
NX编程自动化可以直接在部件模型中创建制造特征。特征识别,甚至是源于导构的线型框架几何图形,加上自动流程选择和机床刀路生成,与标准技术相比,可以缩短超过百分之九十的编程时间。
模拟仿真确保首试质量
NX机械加工提供了完整的工具,用于对整套加工流程进行模拟和确认。NX拥有一系列可扩展的模拟仿真方案,从机床刀路显示到动态切削模拟以及完全的机床运动仿真。
机床刀路验证
作为NX的标准功能,我们可以立即重新执行已计算好的机床刀路。NX有一系列显示选择项,包括在毛坯上进行动态切削模拟。
机床运动仿真
NX机械加工模块内完整的机床运动仿真可以由NX后处理程序输出进行驱动。机床的三维实体模型以及加工部件、夹具和刀具将会按加工代码,照已经设定好的机床移动方式进行运动。
同步显示
使用NX可以以全景或放大模式动态地观察到在完整的机床模拟环境中对毛坯进行动态切削仿真。
VCR(录像机)模式控制
NX提供了简单的屏幕按钮控制模拟显示,就如同我们所熟悉的录像回放装置中的典型控制一样。
缩短在机床上的验证时间
使用NX,程序员无需在机床上进行耗时的检测,而只需要在计算机上验证部件程序即可。
碰撞检测
NX可以自动检测部件、正在加工的毛坯、刀具、刀柄和夹具以及机床结构之间是否存在实际的或接近的碰撞。
输出显示
随着模拟的运行,NC执行代码将实时显示在滚动屏上。
一个系统集成全部功能
内置三维建模和装配
使用NX的程序员可以立即访问完整的几何部件和装配模型,这些都位于同一环境之下。应用这项功能,程序员可以修改部件或毛坯的形状,也可以对刀具、复杂的夹具、甚至是整个机床进行建模。NX装配建模使加工操作的所有要素可以正确定位,并可以立即实施交互式编程和模拟。
无须复制
在统一的NX系统内,集成化的确认和机床模拟系统与独立的验证和模拟软件包相比具有一个显着的优点。它无须翻译、转换或复制数据及已做的工作,并且发生错误的几率更小。所有的部件、库存、夹具、加工刀具和机床模型都运用于NX内部的NC编程和模拟仿真模块中。
控制器驱动机床运动仿真
NX机床运动仿真利用内植的实际控制器软件实现机床运动的精确显示。精确运动、加速、速度和时间及特殊循环都能够得以精确模拟。
创建新的机床模型
使用NX,用户可以应用强大的三维建模和装配工具,非常简便地创建或编辑三维机床模拟模型。NX还可以导入以其它系统或格式创建的三维机床设备模型。
车削、线切割加工和标准铣削
NX机械加工拥有范围广泛的铣削能力,固定轴铣削为三轴加工生成机床刀路提供了完整的工具。象型腔铣和清根模块的自动化操作减少了加工部件所需的步骤一样,平面铣加工的优化技术有助于缩短加工多腔和凸台类部件的时间。
车削
NX的车削功能可以面向二维部件轮廓或者是完整的三维实体模型编程。它包括粗车、多步骤精车、预钻孔、攻螺纹和镗孔等程序。程序员可以规定诸如进给速度、主轴转速和部件间隙等参数。NX车削可以进行A、B轴控制。除了普通任务的丰富功能之外,一个特殊的“教学模式”给用户提供了额外的精加工和特殊加工情况的控制方法。NX具有很大的机动性,允许在XY或ZX环境中进行卧式、立式或者倒立方向的编程。
线切割加工
NX线切割加工编程从接线框或实体模型中产生,实现了两轴和四轴模式下的线切割。可以利用范围广泛的线操作,包括多次走外型、钼丝反向和区域切除。该程序包也可以支持调节Glue Stops 、各种钼丝线径尺寸和功率设置。线切割广泛支持包括AGIE、Charmilles及其它加工设备
后处理和车间工艺文档
集成的NC后处理
NX拥有后处理生成器,可以图形方式创建从二轴到五轴的后处理程序。运用后处理程序生成器,用户可以指定NC编码所需的参数以及用于阐释内部NX机床刀路所需的机床运动参数。
工艺文档的编制,包括工艺流程图、操作顺序信息和工具列表等,通常需要消耗很多时间并被公认是最大的流程瓶颈。NX可以自动生成车间工艺文档并以各种格式进行输出,包括ASCII 车间工艺文档或用于工厂内部局域网的HTML格式。
NX:支持部件制造的解决方案
NX可管理的开发环境
NX利用Teamcenter技术提供了跨越生命周期每个阶段对产品及流程信息进行控制和同步共享的性能。
从设计到制造一体化
在可管理的制造环境中,产品设计师、工艺师及所有制造领域之间可以实现跨学科的协作。
可管理环境对制造专家的价值
非常典型情况是,制造专家通常仅仅为了寻找资料会花60%以上的时间。使用了错误的资料通常会导致延期或者原料浪费。进入可管理的开发环境中的每个人都可以找到并运用他们完成任务所需的正确数据,既节省了时间,又确保了首次加工成功和产品质量。
工装模具设计中的增值服务—制造的最优化
NX软件系列为模具设计提供了一套高度自动化的解决方案。就象专家一样,NX注塑模具向导、NX多工位级进模向导以及NX冷冲模设计软件大大减少了模具设计所需的时间。可共享的NX技术意味着将NX模具设计应用和NX加工能力进行倍增:减少整体流程用时,使效率最大化,生产出具有高度重复性的高品质产品。
演进冷冲模设计技术
NX提供了一套面向流程的工具,用于定义冷冲模流程技术参数,包括模具布局和模具分析及详细的模具设计。该软件包自动地将成本较高而费时的流程与相对应的金属冲压件模型相关联,从而大大地缩短了生产时间。
与加工制造相集成
自动化的模具设计软件使用共享的三维几何体,它可以直接创建模具型面、模架及其它模具结构件,同时可以轻松地进行相关联的更新。
多工位级进模设计
多工位级进模向导通过采用经验证的行业知识和经验自动化控制多工位级进模的设计生产,使用户生产力达到最大化。它将专家的知识电子化并为多工位级进模设计提供了完整的环境,同时也具备融合客户具体要求的高度灵活性。
注塑模设计
NX注塑模设计向导直接从制件模型开始进行模具型腔和结构部件的设计,全部流程序实现自动操作。注塑模设计向导直接面向关键特征数据,驱动NX CAM功能自动化生成机床加工刀路。
❼ 如何把别人的UG文件里的刀具库,输入到自己的刀具库里
一、创建刀具几何结构参数数据库
在实际加工应用中,需要对一个工件或多个工件编制加工工艺及程序时,都有可能用到多种
规格、不同类型的加工刀具。如果我们在编制程序时,每次都要重新创建并设置这些刀具参
数,包括刀具的几何结构、材料等,效率必将大大下降,而且所完成的也只是些简单的重复
劳动。
在UG系统的 CAM模块中,我们可以通过在Create Tool对话框中选择 Retrieve Tool按钮,直
接调用UG刀具库中定义的30多种不同类型的刀具,如图1和图2所示。但UG库中的刀具多数并
不是我们需要的规格尺寸的刀具,因此我们希望可以一次性地定义好需要的刀具几何结构参
数,在以后的操作中能够像调用UG库中刀具一样,直接使用。
在UGⅡ系统中,刀具几何结构参数库主要存放在 ${UGⅡ_BASE_DIR}\Mach\resource\
library\tool\ 目录下,主要由以下几个文件构成:ASCⅡ子目录下Dbc_tool_ ascⅡ.def、
Dbc_tool_ascⅡ.tcl和English或Metric 子目录下的Dool_ database.dat。 文件
Dbc_tool_ascⅡ.def 定义了刀具库必要的刀具几何结构参数变量及库的类型层次结构;文件
Dbc_tool_ascⅡ.tcl则包含了各个刀具库操作事件处理器,它们主要用于UG与刀具库的连接
。在文件Tool_database.dat中存放的就是我们最关心的东西,所有的刀具几何结构参数和材
料信息都在其中。
用户定义新的刀具,可以直接修改Tool_database.dat文件中的刀具记录。另外,也可以在
UG中先定义好刀具的几何结构参数,然后通过执行Shop Documentation,选择最后一个输出
模板Export Tool Library to ASCⅡ datafile,把刀具参数输出到一个文件。接下来,需要
做的工作就是把输出到这个文件中的刀具记录添加到Tool_database.dat文件中。
至此,应该说,基本可以达到最初的目的了。但在实际使用中,随着自定义的刀具不断增多
,用户自己也不清楚到底定义了多少、定义了哪些种类的刀具,从库里调用刀具时,更需要
搞清楚要调用的刀具究竟属于UG刀具库中哪个类型的刀具,如图2所示。通过深入研究,发现
在Dbc_tool_ascⅡ.def文件中对刀具库的类型层次结构定义时,UGⅡ系统用CLASS MILLING、
CLASS DRILLING和CLASS TURNING定义了刀具库的三个主类,在这三个主类下又定义了30多个
子类。在Tool_database.dat文件中的每条刀具记录,都以DATA开头,都包含有T和ST数据,
实际上它们就是此条记录定义的刀具主类TYPE和子类SubType信息。
在向文件Dbc_tool_ascⅡ.def中加入主类代码时,注意前后“{}”的位置,并跟系统定义的
CLASS MILLING、CLASS DRILLING和CLASS TURNING主类结构保持平行,嵌入在CALSS TOOL的
定义中。其中定义的主类类型值不能重复。在每个主类下,可以根据主类自行定义相关的子
类,即用SubType 代替 QUERY "[DB(Type)] = = [01]"中的 Type,并且类型代码值也可以重
新排序。
完成了刀具库自定义类型层次结构的定义,需要从库中检索刀具,还得修改刀具几何结构参
数数据库(Tool_database.dat)中的刀具记录,即修改记录中的T和ST对应的值,则该条记
录进入相应的主类和子类检索,得到如图4所示检索结果。要建立一个完整的刀具几何结构参
数库,类型层次结构定义是基础,后续要做的就是不断地把相应的刀具记录添加到数据库文
件Tool_database.dat中,形成用户自定义的刀具库。
二、创建自定义刀具材料库、零件材料库以及刀具切削参数库
通过以上工作所建立的刀具库,笔者称为刀具几何结构参数库,它主要由刀具的几何结构数
据组成。对于编程人员来说,创建一个Operation,生成可以使用的刀位程序,还需要设置刀
具的相关切削用量参数,包括主轴转速、切削深度、进给速度等。在UG系统的CAM模块中,执
行Feeds and Speeds对话框中的Reset from Table,系统可以根据切削深度、刀具材料、零
件材料及切削方法,自动从库中调用并计算出相应的切削用量值。
除切削深度需要手动设定外,用户从相应的库中可以直接调用不同的切削方法、零件材料和
刀具材料。其中刀具材料,我们也可以在创建刀具时从刀具几何结构参数库中直接得到,关
键是在建立刀具几何结构参数库时,刀具记录中包含了正确刀具材料信息MATREF,即引用刀
具材料库的某一材料参考信息。在UG系统中,切削方法、零件材料、刀具材料都以库参考值
存在,分别对应于CUT_METHODS. DAT、PART_MATERIALS.DAT、TOOL_MATERIALS.DAT文件中的
LIBRF值。系统执行Reset from Table,根据各库参考值和切削深度,在切削参数库
FEEDS_SPEEDS.DAT文件中进行检索,引用被检索出记录的数据,如Surface Speed、
Feed_per_Tooth等的值,进而计算出相应的主轴转速、进给速度等。
因此,在建立刀具材料库、零件材料库时,应系统规划,统一标准,避免混乱,而建库本身
就比较简单了,可以参照UGⅡ系统相应的库,增加或修改以DATA开头的记录。建立刀具切削
参数库的工作就要烦琐得多。一般来说,在实际加工中,要根据不同刀具材料、零件材料,
以及不同的切深和切宽,选择不同的刀具切削用量。一个成熟的工艺技术人员,可根据长期
积累的经验,并参照刀具商提供的参数,结合加工实际状况,选择合适的切削用量,也可以
反过来根据实际加工情况,修正经验值,完成经验的不断积累。创建自定义刀具切削参数库
,就是把用户的经验积累起来,并予以数值化提供给其他技术人员。
三、创建刀具几何图形库
谈到建立刀具库,不能不涉及到刀具几何图形库的使用。创建刀具几何图形库,主要目的就
是在最新的Unigraphics NX2.0 系统中进行刀位机床仿真时,可以调用用户构建的刀具计算
机三维几何模型,如图6所示。没有用户自定义的刀具几何图形库,或者调用UG系统自带的刀
具模型,显然达不到机床仿真的目的。
系统刀具几何图形库,由${UGⅡ_BASE_DIR}\Mach\resource\ library\tool\graphics 目录
下一系列刀具的实体模型文件构成,包含用于显示刀具装配的信息。构建用户自定义的刀具
装配模型,推荐在非主模型文件中,将用户自定义刀具、刀柄及相关部件进行装配。对于钻
削或铣削的刀具,在模型装配时,刀具轴应与X轴正方向一致,坐标系零点在刀柄夹持点(
Tool Tracking Point)。另外,构建的刀具非主模型文件名应与刀具几何结构参数库
tool_database.dat文件中DATA记录的LIBRF值相同。这样,按照以上原则,系统进行刀位机
床仿真或需要显示刀具时,才能够按照刀具的库参考值,调出刀具装配模型,并以系统缺省
方向和位置显示出用户自定义的刀具模型。
四、在创建自定义刀具库过程中需要注意的几个问题
(1)建立刀具库时,在dbc_tool_ascⅡ.def文件中定义刀具主类或子类时,UI_NAME 后面可以
采用中文字串。另外,库中所有记录的刀具描述、材料描述都可以采用中文字串。但目前不
建议刀具库记录中的LIBRF值采用中文。
(2)建立刀具几何结构参数库、刀具材料库、零件材料库及切削参数库过程中,应保持每个库
中的LIBRF值的唯一性,原因在于它是作为系统其他库引用和系统内部识别的标识。
(3)调用刀具库创建刀具时,为增加检索查询项目,可以在dbc_tool_ascⅡ.def文件内,相应
刀具主类或子类定义的“DIALOG libref Diameter”行中,加入需要增加的刀具查询参数。
当然,要提高CAD/CAM系统效率,以及工艺制造技术人员的快速反应能力,本文所涉及到的仅
仅是系统里很小的一个环节。更多的工作还需要技术人员不懈的努力,脚踏实地地收集和积
累制造系统中的各个基础数据,结合现代新技术不断完善和健全,从而提高系统整体的协作
水平和工作效率
❽ ug4.0编辑加工数据库中为什么输入切削参数后不显示
编辑加工数据库中可以输入切削参数。它不显示可能是在背后有后台隐藏。
❾ 世界上第一个切削数据库
金属切削数据库?
❿ 怎么在快捷方式中加运行参数 详细一点
一般加参数的方式都一样,只不过所加参数有区别,有的可开启控制台,有的可窗口化,有的可进行相关编辑。格式如下:打开快捷方式的“属性”栏,在“快捷方式”选项卡中的“目标”栏中,一般显示的是“D:\...\*.exe”,在这一行末尾添加空格和短横线(就是英文输入状态时的大键盘减号,然后输入参数就可以了。举例:D:\Diablo2\D2Lorder.exe -edit.mpq就是一个带参数的目标位置,可以进行编辑功能,前提是存在edit.mpq文件;D:\CS1.6\Cstrike.exe -console也是一个带参数的目标位置,可以开启控制台。只要你知道想运行的参数,都可以这样添加。
当今,切削加工在各大工厂、加工车间极其常见,特别是高度自动化的数控加工,使得切削加工更是朝着全数字化制造方向发展。切削参数是完成切削工作的重要数据,是衡量切削加工正常运作、保证产品质量的关键所在。面对日益增多的切削数据,如何快速有效的提取切削工艺参数信息,科学地管理切削数据将会直接关系到企业的生产效率与加工成本,这也势必使传统切削工艺参数的管理模式受到冲击与挑战。
随着计算机技术不断融入机加工行业,使得利用计算机开发切削工艺数据库,实现切削加工工艺参数的科学管理成为可能。本设计就是利用计算机VC编程开发了一种数据库管理程序,主要应用对象是切削加工工艺参数库的建立(数控机床参数库的建立)。
一、整体方案
本系统主要针对数控机床的工艺参数进行存储和调用,利用Access建立数据库,然后通过VC++6.0的功能模块(MFC ODBC)对数据库进行连接,可以对其数据进行处理,如添加、删除、修改和查询,便于对数控机床的工艺参数管理。同时,设计系统操作界面简明,用户操作直观而方便,当数据既多又复杂时,通过本软件也可轻松地对数据进行一些操作。系统整体方案如图1所示。
图1系统整体方案
二、程序设计
用Access建立数据库并用ODBC与数据源相连接,把文件中的数据导入数据库,编程实现管理员及用户的权限限制,编程实现数据库的增加、删除、查询和更新等操作,程序设计总流程如图2所示。
程序设计总流程
首先,创建Access数据库。系统中我们建立3个数据库db1.mdb、db2.mdb和db3.mdb,分别对应储存余量库、进给量库和切削速度库,各数据库中分别存储有不同的数据表,如图3所示为进给量数据库中的半精车外形表。
半精车外形表
其次,添加ODBC数据源。在VC++6.0中利用ODBC进行数据库应用程序设计时,首先需要创建ODBC数据库引擎来连接要管理的数据库。ODBC作为一个开放的标准数据库应用接口,可以与所有支持ODBC系统的数据库建立联系来存取和使用这些数据库,这个联系是通过创建一个连接这些数据库的ODBC数据源来实现的