当前位置:首页 » 操作系统 » BI写算法

BI写算法

发布时间: 2022-03-12 22:25:03

❶ 为什么bicgstab算法要与预处理方法相结合

粗糙集理论是一种研究不精确、不确定性知识的数学工具。目前受到了KDD的广泛重视,利用粗糙集理论对数据进行处理是一种十分有效的精简数据维数的方法。

❷ BI的三个层次

经过几年的积累,大部分中大型的企事业单位已经建立了比较完善的CRM、ERP、OA等基础信息化系统。这些系统的统一特点都是:通过业务人员或者用户的操作,最终对数据库进行增加、修改、删除等操作。上述系统可统一称为OLTP(Online Transaction Process,在线事务处理),指的就是系统运行了一段时间以后,必然帮助企事业单位收集大量的历史数据。但是,在数据库中分散、独立存在的大量数据对于业务人员来说,只是一些无法看懂的天书。业务人员所需要的是信息,是他们能够看懂、理解并从中受益的抽象信息。此时,如何把数据转化为信息,使得业务人员(包括管理者)能够充分掌握、利用这些信息,并且辅助决策,就是商业智能主要解决的问题。 如何把数据库中存在的数据转变为业务人员需要的信息?大部分的答案是报表系统。简单说,报表系统已经可以称作是BI了,它是BI的低端实现。
国外的企业,大部分已经进入了中端BI,叫做数据分析。有一些企业已经开始进入高端BI,叫做数据挖掘。而我国的企业,大部分还停留在报表阶段。
数据报表不可取代
传统的报表系统技术上已经相当成熟,大家熟悉的Excel、水晶报表、Reporting Service等都已经被广泛使用。但是,随着数据的增多,需求的提高,传统报表系统面临的挑战也越来越多。
1. 数据太多,信息太少
密密麻麻的表格堆砌了大量数据,到底有多少业务人员仔细看每一个数据?到底这些数据代表了什么信息、什么趋势?级别越高的领导,越需要简明的信息。如果我是董事长,我可能只需要一句话:我们的情况是好、中还是差?
2. 难以交互分析、了解各种组合
定制好的报表过于死板。例如,我们可以在一张表中列出不同地区、不同产品的销量,另一张表中列出不同地区、不同年龄段顾客的销量。但是,这两张表无法回答诸如“华北地区中青年顾客购买数码相机类型产品的情况”等问题。业务问题经常需要多个角度的交互分析。
3. 难以挖掘出潜在的规则
报表系统列出的往往是表面上的数据信息,但是海量数据深处潜在含有哪些规则呢?什么客户对我们价值最大,产品之间相互关联的程度如何?越是深层的规则,对于决策支持的价值越大,但是,也越难挖掘出来。
4. 难以追溯历史,数据形成孤岛
业务系统很多,数据存在于不同地方。太旧的数据往往被业务系统备份出去,导致宏观分析、长期历史分析难度很大。
因此,随着时代的发展,传统报表系统已经不能满足日益增长的业务需求了,企业期待着新的技术。数据分析和数据挖掘的时代正在来临。值得注意的是,数据分析和数据挖掘系统的目的是带给我们更多的决策支持价值,并不是取代数据报表。报表系统依然有其不可取代的优势,并且将会长期与数据分析、挖掘系统一起并存下去。
八维以上的数据分析
如果说OLTP侧重于对数据库进行增加、修改、删除等日常事务操作,OLAP(Online Analytics Process,在线分析系统)则侧重于针对宏观问题,全面分析数据,获得有价值的信息。
为了达到OLAP的目的,传统的关系型数据库已经不够了,需要一种新的技术叫做多维数据库。
多维数据库的概念并不复杂。举一个例子,我们想描述2003年4月份可乐在北部地区销售额10万元时,牵扯到几个角度:时间、产品、地区。这些叫做维度。至于销售额,叫做度量值。当然,还有成本、利润等。
除了时间、产品和地区,我们还可以有很多维度,例如客户的性别、职业、销售部门、促销方式等等。实际上,使用中的多维数据库可能是一个8维或者15维的立方体。
虽然结构上15维的立方体很复杂,但是概念上非常简单。
数据分析系统的总体架构分为四个部分:源系统、数据仓库、多维数据库、客户端。
·源系统:包括现有的所有OLTP系统,搭建BI系统并不需要更改现有系统。
·数据仓库:数据大集中,通过数据抽取,把数据从源系统源源不断地抽取出来,可能每天一次,或者每3个小时一次,当然是自动的。数据仓库依然建立在关系型数据库上,往往符合叫做“星型结构”的模型。
·多维数据库:数据仓库的数据经过多维建模,形成了立方体结构。每一个立方体描述了一个业务主题,例如销售、库存或者财务。
·客户端:好的客户端软件可以把多维立方体中的信息丰富多彩地展现给用户。
数据分析案例:
在实际的案例中,我们利用Oracle9i搭建了数据仓库,Microsoft Analysis Service 2000搭建了多维数据库,ProClarity 6.0 作为客户端分析软件。
分解树好像一个组织图。分解树在回答以下问题时很?最高的销售额?
·在特定的产品种类内,各种产品间的销售额分布如何?
·哪个销售人员完成了最高百分比的销售额?
在图1中,可以对PC机在各个地域的销售额和所占百分比一目了然。任意一层分解树都可以根据不同维度随意展开。在该分解树中,在大区这一层是按国家展开,在国家这一层是按产品分类展开。
投影图(图3)使用散点图的格式,显示两个或三个度量值之间的关系。数据点的集中预示两个变量之间存在强的相关关系,而稀疏分布的数据点可能显示不明显的关系。
投影图很适合分析大量的数据。在显示因果关系方面有明显效果,比如例外的数据点就可以考虑进一步研究,因为它们落在“正常”的点群范围之外。
数据挖掘看穿你的需求
广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。

❸ BI主要掌握什么

其实BI中有很多道理或原理在内,而上面的这些都只是数据的呈现方式。
请大虾能够介绍一下BI原理相关的名词,至少弄懂这些名词再看这些表象的东西不会一头雾水。
如果有高手也请给大家介绍一个学习的方向。
最起码搞明白BI,ETL,ODS,DW,DM,OLAP,OLTP这些名词的含义以及之间的关系;google一搜就明白了!
你想学哪一套啊?BI的话还是要有关系数据库基础的。如果你有这基础的话可以从微软的那套开始。我是从研究ETL入门的。
维度和量度是olap cube中的概念,具体的话可以如下理解
维度就相当于坐标系上就坐标轴,比如时间,部门;
度量就是能在报表里面反应出来的数据,比如销售额;
那么OLAP要这些维度和量度干什么呢?其实简单点来说对于不同的业务需求使用不同的维度,比如说要展现2009年第一季度公司的销售额,那么我们就需要从时间维度上分析销售额这个量度;如果要展现某个部门的销售额,则从部门这个维度上来分析销售额。当然,也有业务会是这样:展现2009年第一季度部门A的销售额,那就需要从两个维度上一起来分析了。
联机丛书很好很强大~如果你完整的安装所有的SQL SERVER组件,一切尽在其中~
ODS---ODS(Operational Data Store)是数据仓库体系结构中的一个可选部分,ODS具备数据仓库的部分特征和OLTP系统的部分特征,它是“面向主题的、集成的、当前或接近当前的、不断变化的”数据。  
DW---数据仓库,英文名称为Data Warehouse,可简写为DW  
DM---数据挖掘(Data Minning)  
OLAP---联机分析处理,英文名称为On-Line Analysis Processing,简写为OLAP  
OLTP---On-Line Transaction Processing联机事务处理系统(OLTP)
简单介绍一下 SQL Server BI 吧(我就懂这个)。
SQL Server企业版中附带了三个服务:SQL Server Integration Service, SQL Server Analysis Service,SQL Server Reporting Service。这三种服务都是为 BI 服务的,既可以单独使用,又可以配合使用。
三个服务一般都围绕一个数据仓库(Dateware House,简称DW)进行工作。
一般的数据仓库实质就是一个普通的关系数据库,只是针对 BI 的特性进行了特殊的设计。一般都是由事实表与维度表组成。例如,一个普通的电子商务网站中,每一次的购买行为形成一条事实数据,而事实数据所关联的产品(大类别、小类别、价格等等)、客户(联系方式、地理位置等)等就是维度。这种由事实表与维度表组成的数据库,能够大为方便将来的查询与分析,并且性能较高(当然,仍然取决于设计)。
SQL Server Integration Service,主要用来从原始数据库(SQL Server/Oracle/MySql/XML/Excel等都可以)中增量提取数据,经过清理、整合、计算后,加载到数据仓库中。Integration 项目可以运行在 SQL Server 代理中作为一个作业定期执行。
SQL Server Analysis Service,主要用来对数据仓库中的数据进行既定的分析。进行 Analysis 开发主要是建立多维数据模型,模型建立后其元数据可以存储到 SQL Server Analysis Service 中或者其他地方。
SQL Server Reporting Service,链接上数据源后可以生成报表(表格/矩阵/图表)。可以使用 Analysis Service 作为数据源,也可以直接使用任意数据库作为数据源。
其实这三个服务的应用很灵活,我只是描述了我应用的一个方式。

跟所有其它技术一样,摸不着头脑的时候,觉得很麻烦,不知从哪入手。而只要循序渐进的学习,要入门也很简单,一旦学会了,你就发现用这个开发统计系统,真是太简单了!而且生成的报表样式非常灵活,报表还能导出为多种常用格式(Excel,PDF,XML,Word,Tiff等等)。
BI需要的技术:
1.数据库:Oracle, DB2, SQL SERVER,最好也懂点Sybase, My SQL
包括,SQL,PLSQL,备份,恢复,调优
2.ETL: Informatica, Datastage, 手工ETL
3.报表:Cognos, BO, BIEE, Hyperion.....
4.操作系统, UNIX或者Linux,AIX, Solaris之类,SHELL脚本
5.外语,英语等,全会更好
6.HTML, JAVA, JS, CSS 多多益善
7.熟悉了解一些ERP系统,SAP,Sieble,Salesforce

当然了,要想深入,还是需要大量的学习和琢磨的。可以用一下亿信BI之类的BI工具会很有帮助。

❹ 什么是 BI工程师

BI工程师,主要是做数据分析,数据仓库,以及相关报表,对一些数据进行处理,对数据库要有比较深入的了解。

BI工程师需要有一定的数据库经验,掌握SQL查询优化方法,精通Oracle、SQL Server、MySQL等主流数据库的应用设计、性能调优及存储过程的开发.掌握BI相关工具,如ETL工具(如SSIS)、OLAP工具(如SSAS)和前端展示工具.熟悉ETL逻辑、OLAP设计和数据挖掘相关算法.

拓展资料:

工作职责:

  1. 负责ETL设计、模型设计、开发、技术支持等工作;

2. 负责ETL应用开发,数据库性能进行调优;

3. 参与数据抽取、加载、转换和脚本开发;

4. 负责BI展现的开发;

5、使用Hadoop, Hive等对海量日志进行统计分析。

❺ bi字怎么写

关于【bi】读音的汉字,在新华字典中共收录了83个。每个字的写法个不一样,含义也不一样。

各个字读音及其含义写法分别介绍如下

1、第一个字因为涉及敏感问题,此处省略。如果你想看,可以去看新华字典。写法是:

上面一个【尸】,下面一个【穴】。含义就是女孩子的.............。


2、【逼】读音:

现在我们大多用钢笔或者是圆珠笔,而使用毛笔的时候多用于绘画或者是书法。

因为【bi】读音的字共83个,我这里只介绍了十个,如果全部写下来,估计得写一天。小伙伴们常用到的还有【币】钱币的币,以及【必】必然的必,除了这些常用字外,其余的字很少用到,所以我这里就不一一介绍了,望海涵!

❻ bi怎么写

逼的笔顺是:横、竖、横折、横、竖、横折、横、竖、横、点、横折折撇、捺,写法如下图所示:

一、逼的释义

1、强迫;威胁。

2、强行索取。

3、十分接近;靠近。

4、狭窄。

二、组词

逼近、逼真、威逼、逼迫、强逼等。

组词

一、逼真 [ bī zhēn ]

1、极像真的。

2、真切。

二、威逼 [ wēi bī ]

用威力强迫或进逼。

❼ bi视的bi怎么写

鄙视(bǐ shì)

❽ 2.写出对二叉树(树的类型表示bitree,变量定义为bt)的中序遍历算法

void midTraverse( bitree bt){
if(!(bt->leftTree&&bt->rightTree)){
printf("%d",bt->data);
}else{
midTraverse(bt->leftTree);
midTraverse(bt->rightTree);
}
}

❾ 史学双bi的bi字咋写

是玉璧的璧。璧为玉石,是一种宝石,代表着珍贵。在史学双璧中,双璧指的是《史记》和《资治通鉴》,都是史学界的高峰,就像宝玉石一样历久弥坚,熠熠生辉。

热点内容
细说phppdf 发布:2024-11-15 06:38:35 浏览:276
征途PK脚本 发布:2024-11-15 06:37:51 浏览:680
vbs打不开编译器错误 发布:2024-11-15 06:35:12 浏览:344
深海迷航密码在哪里 发布:2024-11-15 06:30:23 浏览:303
服务器日志怎么分析 发布:2024-11-15 06:22:04 浏览:525
字体目录在哪个文件夹 发布:2024-11-15 06:20:28 浏览:181
php种子怎么打开 发布:2024-11-15 06:07:01 浏览:346
密码箱的密码忘记了如何开锁 发布:2024-11-15 06:04:41 浏览:956
安卓软件和苹果系统哪个好 发布:2024-11-15 05:48:32 浏览:284
pythonwhileelse 发布:2024-11-15 05:39:10 浏览:672