数据库中的类
① 数据库分为哪几类
一、数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。而不同的数据库是按不同的数据结构来联系和组织的。
二、所谓数据结构是指数据的组织形式或数据之间的联系。
三、数据结构又分为数据的逻辑结构和数据的物理结构。
数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关;
数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也被称为存储结构。
四、层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。
② 数据库的类型都有哪些
数据库有两种类型,分别是关系型数据库与非关系型数据库。
数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
关系型数据库主要有:
Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等等。
非关系型数据库主要有:
NoSql、Cloudant、MongoDb、redis、HBase等等。
(2)数据库中的类扩展阅读:
非关系型数据库的优势:
1、性能高:NOSQL是基于键值对的,可以想象成表中的主键和值的对应关系,而且不需要经过SQL层的解析,所以性能非常高。
2、可扩展性好:同样也是因为基于键值对,数据之间没有耦合性,所以非常容易水平扩展。
关系型数据库的优势:
1、可以复杂查询:可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。
2、事务支持良好:使得对于安全性能很高的数据访问要求得以实现。
③ 数据库中数据类型有哪些呢
数据类型 类型 描 述 bit 整型 bit 数据类型是整型,其值只能是0、1或空值。这种数据类型用于存储只有两种可能值的数据,如Yes 或No、True 或Fa lse 、On 或Off int 整型 int 数据类型可以存储从- 231(-2147483648)到231 (2147483 647)之间的整数。存储到数据库的几乎所有数值型的数据都可以用这种数据类型。这种数据类型在数据库里占用4个字节 smallint 整型 smallint 数据类型可以存储从- 215(-32768)到215(32767)之间的整数。这种数据类型对存储一些常限定在特定范围内的数值型数据非常有用。这种数据类型在数据库里占用2 字节空间 tinyint 整型 tinyint 数据类型能存储从0到255 之间的整数。它在你只打算存储有限数目的数值时很有用。 这种数据类型在数据库中占用1 个字节 numeric精确数值型 numeric数据类型与decimal 型相同 decimal 精确数值型 decimal 数据类型能用来存储从-1038-1到1038-1的固定精度和范围的数值型数据。使用这种数据类型时,必须指定范围和精度。 范围是小数点左右所能存储的数字的总位数。精度是小数点右边存储的数字的位数 money 货币型 money 数据类型用来表示钱和货币值。这种数据类型能存储从-9220亿到9220 亿之间的数据,精确到货币单位的万分之一 smallmoney 货币型 smallmoney 数据类型用来表示钱和货币值。这种数据类型能存储从-214748.3648 到214748.3647 之间的数据,精确到货币单位的万分之一 float 近似数值型 float 数据类型是一种近似数值类型,供浮点数使用。说浮点数是近似的,是因为在其范围内不是所有的数都能精确表示。浮点数可以是从-1.79E+308到1.79E+308 之间的任意数 real 近似数值型 real 数据类型像浮点数一样,是近似数值类型。它可以表示数值在-3.40E+38到3.40E+38之间的浮点数 datetime 日期时间型 datetime数据类型用来表示日期和时间。这种数据类型存储从1753年1月1日到9999年12月3 1日间所有的日期和时间数据, 精确到三百分之一秒或3.33毫秒 Smalldatetime 日期时间型 smalldatetime 数据类型用来表示从1900年1月1日到2079年6月6日间的日期和时间,精确到一分钟 cursor 特殊数据型 cursor 数据类型是一种特殊的数据类型,它包含一个对游标的引用。这种数据类型用在存储过程中,而且创建表时不能用 timestamp 特殊数据型 timestamp 数据类型是一种特殊的数据类型,用来创建一个数据库范围内的唯一数码。 一个表中只能有一个timestamp列。每次插入或修改一行时,timestamp列的值都会改变。尽管它的名字中有“time”, 但timestamp列不是人们可识别的日期。在一个数据库里,timestamp值是唯一的 Uniqueidentifier 特殊数据型 Uniqueidentifier数据类型用来存储一个全局唯一标识符,即GUID。GUID确实是全局唯一的。这个数几乎没有机会在另一个系统中被重建。可以使用NEWID 函数或转换一个字符串为唯一标识符来初始化具有唯一标识符的列 char 字符型 char数据类型用来存储指定长度的定长非统一编码型的数据。当定义一列为此类型时,你必须指定列长。当你总能知道要存储的数据的长度时,此数据类型很有用。例如,当你按邮政编码加4个字符格式来存储数据时,你知道总要用到10个字符。此数据类型的列宽最大为8000 个字符 varchar 字符型 varchar数据类型,同char类型一样,用来存储非统一编码型字符数据。与char 型不一样,此数据类型为变长。当定义一列为该数据类型时,你要指定该列的最大长度。 它与char数据类型最大的区别是,存储的长度不是列长,而是数据的长度 text 字符型 text 数据类型用来存储大量的非统一编码型字符数据。这种数据类型最多可以有231-1或20亿个字符 nchar 统一编码字符型 nchar 数据类型用来存储定长统一编码字符型数据。统一编码用双字节结构来存储每个字符,而不是用单字节(普通文本中的情况)。它允许大量的扩展字符。此数据类型能存储4000种字符,使用的字节空间上增加了一倍 nvarchar 统一编码字符型 nvarchar 数据类型用作变长的统一编码字符型数据。此数据类型能存储4000种字符,使用的字节空间增加了一倍 ntext 统一编码字符型 ntext 数据类型用来存储大量的统一编码字符型数据。这种数据类型能存储230 -1或将近10亿个字符,且使用的字节空间增加了一倍 binary 二进制数据类型 binary数据类型用来存储可达8000 字节长的定长的二进制数据。当输入表的内容接近相同的长度时,你应该使用这种数据类型 varbinary 二进制数据类型 varbinary 数据类型用来存储可达8000 字节长的变长的二进制数据。当输入表的内容大小可变时,你应该使用这种数据类型 image 二进制数据类型 image 数据类型用来存储变长的二进制数据,最大可达231-1或大约20亿字节
④ 数据库有哪些类型
数据库有两种类型,分别是关系型数据库与非关系型数据库。
数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。
关系型数据库主要有:
Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等等。
非关系型数据库主要有:
NoSql、Cloudant、MongoDb、redis、HBase等等。
(4)数据库中的类扩展阅读:
非关系型数据库的优势:
1、性能高:NOSQL是基于键值对的,可以想象成表中的主键和值的对应关系,而且不需要经过SQL层的解析,所以性能非常高。
2、可扩展性好:同样也是因为基于键值对,数据之间没有耦合性,所以非常容易水平扩展。
关系型数据库的优势:
1、可以复杂查询:可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。
2、事务支持良好:使得对于安全性能很高的数据访问要求得以实现。
⑤ 数据库有哪些类
■关系数据库 facts and information
关系数据库是建立在集合代数基础上,应用数学方法来处理数据库中的数据。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。
关系模型由关系数据结构、关系操作集合、关系完整性约束三部分组成。
全关系系统十二准则
全关系系统应该完全支持关系模型的所有特征。关系模型的奠基人E.F.Codd具体地给出了全关系系统应遵循的基本准则。
;''准则0'' : 一个关系形的关系数据库系统必须能完全通过它的关系能力来管理数据库。
;''准则1'' 信息准则 : 关系数据库系统的所有信息都应该在逻辑一级上用表中的值这一种方法显式的表示。
;''准则2'' 保证访问准则 : 依靠表名、主码和列名的组合,保证能以逻辑方式访问关系数据库中的每个数据项。
;''准则3'' 空值的系统化处理 : 全关系的关系数据库系统支持空值的概念,并用系统化的方法处理空值。
;''准则4'' 基于关系模型的动态的联机数据字典 : 数据库的描述在逻辑级上和普通数据采用同样的表述方式。
;''准则5'' 统一的数据子语言 :
一个关系数据库系统可以具有几种语言和多种终端访问方式,但必须有一种语言,它的语句可以表示为严格语法规定的字符串,并能全面的支持各种规则。
;''准则6'' 视图更新准则 : 所有理论上可更新的视图也应该允许由系统更新。
;''准则7'' 高级的插入、修改和删除操作 : 系统应该对各种操作进行查询优化。
;''准则8'' 数据的物理独立性 : 无论数据库的数据在存储表示或存取方法上作任何变化,应用程序和终端活动都保持逻辑上的不变性。
;''准则9'' 数据逻辑独立性 : 当对基本关系进行理论上信息不受损害的任何改变时,应用程序和终端活动都保持逻辑上的不变性。
;''准则10'' 数据完整的独立性 : 关系数据库的完整性约束条件必须是用数据库语言定义并存储在数据字典中的。
;''准则11'' 分布独立性 : 关系数据库系统在引入分布数据或数据重新分布时保持逻辑不变。
;''准则12'' 无破坏准则 : 如果一个关系数据库系统具有一个低级语言,那么这个低级语言不能违背或绕过完整性准则。
■实时数据库是数据库系统发展的一个分支,它适用于处理不断更新的快速变化的数据及具有时间限制的事务处理。实时数据库技术是实时系统和数据库技术相结合的产物,研究人员希望利用数据库技术来解决实时系统中的数据管理问题,同时利用实时技术为实时数据库提供时间驱动调度和资源分配算法。然而,实时数据库并非是两者在概念、结构和方法上的简单集成。需要针对不同的应用需求和应用特点,对实时数据模型、实时事务调度与资源分配策略、实时数据查询语言、实时数据通信等大量问题作深入的理论研究。实时数据库系统的主要研究内容包括:
实时数据库模型
实时事务调度:包括并发控制、冲突解决、死锁等内容
容错性与错误恢复
访问准入控制
内存组织与管理
I/O与磁盘调度
主内存数据库系统
不精确计算问题
放松的可串行化问题
实时SQL
实时事务的可预测性
研究现状与发展实时数据库系统最早出现在1988年3月的ACM SIGMOD Record的一期专刊中。随后,一个成熟的研究群体逐渐出现,这标志着实时领域与数据库领域的融合,标志着实时数据库这个新兴研究领域的确立。此后,出现了大批有关实时数据库方面的论文和原型系统。人机交互技术与智能信息处理实验室实时数据库小组一直致力于实时系统、实时智能、实时数据库系统及相关技术的研究与开发,并取得了一定的成绩。
⑥ 请问数据库有哪些种类呢
数据库共有3种类型,为关系数据库、非关系型数据库和键值数据库。
1、关系数据库
MySQL、MariaDB(MySQL的代替品,英文维基网络从MySQL转向MariaDB)、Percona Server(MySQL的代替品·)、PostgreSQL、Microsoft Access、Microsoft SQL Server、Google Fusion Tables、FileMaker、Oracle数据库、Sybase、dBASE、Clipper、FoxPro、foshub。
几乎所有的数据库管理系统都配备了一个开放式数据库连接(ODBC)驱动程序,令各个数据库之间得以互相集成。
2、非关系型数据库(NoSQL)
BigTable(Google)、Cassandra、MongoDB、CouchDB。
3、键值(key-value)数据库
Apache Cassandra(为Facebook所使用):高度可扩展、Dynamo、LevelDB(Google)。
(6)数据库中的类扩展阅读:
数据库模型:对象模型、层次模型(轻量级数据访问协议)、网状模型(大型数据储存)、关系模型、面向对象模型、半结构化模型、平面模型(表格模型,一般在形式上是一个二维数组。如表格模型数据Excel)。
数据库的架构可以大致区分为三个概括层次:内层、概念层和外层。
⑦ 数据库有哪几种类型
四种模糊数据库指能够处理模糊数据的数据库。一般的数据库都是以二直逻辑和精确的数据工具为基础的,不能表示许多模糊不清的 事情。随着模糊数学理论体系的建立,人们可以用数量来描述模糊事件并能进行模糊运算。这样就可以把不完全性、不确定性、模糊性引入数据库系统中,从而形成模糊数据库。模糊数据库研究主要有两方面,首先是如何在数据库中存放模糊数据;其次是定义各种运算建立模糊数据上的函数。模糊数的表示主要有模糊区间数、模糊中心数、模糊集合数和隶属函数等。 统计数据库管理统计数据的数据库系统。这类数据库包含有大量的数据记录,但其目的是向用户提供各种统计汇总信息,而不是提供单个记录的信息。 网状数据库处理以记录类型为结点的网状数据模型的数据库。处理方法是将网状结构分解成若干棵二级树结构,称为系。系类型 是二个或二个以上的记录类型之间联系的一种描述。在一个系类型中,有一个记录类型处于主导地位,称为系主记录类 型,其它称为成员记录类型。系主和成员之间的联系是一对多的联系。网状数据库的代表是DBTG系统。1969年美国的 CODASYL组织提出了一份“DBTG报告”,以后,根据DBTG报告实现的系统一般称 为DBTG系统。现有的网状数据库系统大都是采用DBTG方案的。DBTG系统是典型的三级结构体系:子模式、模式、存储模式。相应的数据定义语言分别称为子模式定义语言SSDDL,模式定义语言SDDL,设备介质控制语言DMCL。另外还有数据操纵语言DML。 算逻辑规则推理。具体为:递归查询的优化、规则的一致性维护等。
⑧ 数据库的种类有哪些
数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。而不同的数据库是按不同的数据结构来联系和组织的。 1.数据结构模型 (1)数据结构 所谓数据结构是指数据的组织形式或数据之间的联系。如果用D表示数据,用R表示数据对象之间存在的关系集合,则将DS=(D,R)称为数据结构。例如,设有一个电话号码簿,它记录了n个人的名字和相应的电话号码。为了方便地查找某人的电话号码,将人名和号码按字典顺序排列,并在名字的后面跟随着对应的电话号码。这样,若要查找某人的电话号码(假定他的名字的第一个字母是Y),那么只须查找以Y开头的那些名字就可以了。该例中,数据的集合D就是人名和电话号码,它们之间的联系R就是按字典顺序的排列,其相应的数据结构就是DS=(D,R),即一个数组。 (2)数据结构种类 数据结构又分为数据的逻辑结构和数据的物理结构。数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关。数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也被称为存储结构。这里只研究数据的逻辑结构,并将反映和实现数据联系的方法称为数据模型。 目前,比较流行的数据模型有三种,即按图论理论建立的层次结构模型和网状结构模型以及按关系理论建立的关系结构模型。 2.层次、网状和关系数据库系统 (1)层次结构模型 层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。下图是一个高等学校的组织结构图。这个组织结构图像一棵树,校部就是树根(称为根结点),各系、专业、教师、学生等为枝点(称为结点),树根与枝点之间的联系称为边,树根与边之比为1:N,即树根只有一个,树枝有N个。 按照层次模型建立的数据库系统称为层次模型数据库系统。IMS(Information Manage-mentSystem)是其典型代表。 (2)网状结构模型 按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(Data Base Task Group)。用数学方法可将网状数据结构转化为层次数据结构。 (3)关系结构模型 关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。例如某单位的职工关系就是一个二元关系。 由关系数据结构组成的数据库系统被称为关系数据库系统。 在关系数据库中,对数据的操作几乎全部建立在一个或多个关系表格上,通过对这些关系表格的分类、合并、连接或选取等运算来实现数据的管理。dBASEII就是这类数据库管理系统的典型代表。对于一个实际的应用问题(如人事管理问题),有时需要多个关系才能实现。用dBASEII建立起来的一个关系称为一个数据库(或称数据库文件),而把对应多个关系建立起来的多个数据库称为数据库系统。dBASEII的另一个重要功能是通过建立命令文件来实现对数据库的使用和管理,对于一个数据库系统相应的命令序列文件,称为该数据库的应用系统。因此,可以概括地说,一个关系称为一个数据库,若干个数据库可以构成一个数据库系统。数据库系统可以派生出各种不同类型的辅助文件和建立它的应用系统。