linux进程同步
‘壹’ linux多进程和线程同步的几种方式
Linux 线程同步的三种方法
线程的最大特点是资源的共享性,但资源共享中的同步问题是多线程编程的难点。linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。
一、互斥锁(mutex)
通过锁机制实现线程间的同步。
初始化锁。在Linux下,线程的互斥量数据类型是pthread_mutex_t。在使用前,要对它进行初始化。
静态分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
动态分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加锁。对共享资源的访问,要对互斥量进行加锁,如果互斥量已经上了锁,调用线程会阻塞,直到互斥量被解锁。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
销毁锁。锁在是使用完成后,需要进行销毁以释放资源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//编译:g++ -o thread testthread.cpp -lpthread
二、条件变量(cond)
互斥锁不同,条件变量是用来等待而不是用来上锁的。条件变量用来自动阻塞一个线程,直到某特殊情况发生为止。通常条件变量和互斥锁同时使用。条件变量分为两部分: 条件和变量。条件本身是由互斥量保护的。线程在改变条件状态前先要锁住互斥量。条件变量使我们可以睡眠等待某种条件出现。条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。条件的检测是在互斥锁的保护下进行的。如果一个条件为假,一个线程自动阻塞,并释放等待状态改变的互斥锁。如果另一个线程改变了条件,它发信号给关联的条件变量,唤醒一个或多个等待它的线程,重新获得互斥锁,重新评价条件。如果两进程共享可读写的内存,条件变量可以被用来实现这两进程间的线程同步。
初始化条件变量。
静态态初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
动态初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待条件成立。释放锁,同时阻塞等待条件变量为真才行。timewait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活条件变量。pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有线程的阻塞
清除条件变量。无线程等待,否则返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;
static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//这个mutex主要是用来保证pthread_cond_wait的并发性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//这个while要特别说明一下,单个pthread_cond_wait功能很完善,为何
//这里要有一个while (head == NULL)呢?因为pthread_cond_wait里的线
//程可能会被意外唤醒,如果这个时候head != NULL,则不是我们想要的情况。
//这个时候,应该让线程继续进入pthread_cond_wait
// pthread_cond_wait会先解除之前的pthread_mutex_lock锁定的mtx,
//然后阻塞在等待对列里休眠,直到再次被唤醒(大多数情况下是等待的条件成立
//而被唤醒,唤醒后,该进程会先锁定先pthread_mutex_lock(&mtx);,再读取资源
//用这个流程是比较清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //临界区数据操作完毕,释放互斥锁
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子线程会一直等待资源,类似生产者和消费者,但是这里的消费者可以是多个消费者,而
//不仅仅支持普通的单个消费者,这个模型虽然简单,但是很强大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head这个临界资源,先加锁,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解锁
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//关于pthread_cancel,有一点额外的说明,它是从外部终止子线程,子线程会在最近的取消点,退出
//线程,而在我们的代码里,最近的取消点肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信号量(sem)
如同进程一样,线程也可以通过信号量来实现通信,虽然是轻量级的。信号量函数的名字都以"sem_"打头。线程使用的基本信号量函数有四个。
信号量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
这是对由sem指定的信号量进行初始化,设置好它的共享选项(linux 只支持为0,即表示它是当前进程的局部信号量),然后给它一个初始值VALUE。
等待信号量。给信号量减1,然后等待直到信号量的值大于0。
int sem_wait(sem_t *sem);
释放信号量。信号量值加1。并通知其他等待线程。
int sem_post(sem_t *sem);
销毁信号量。我们用完信号量后都它进行清理。归还占有的一切资源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;
static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);
int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}
‘贰’ Linux下C实现多进程同步并行
你去查一下OpenMP相关书籍,用OpenMP库函数实现吧,Linux的gcc编译器4.2版以后开始内置OpenMP并行支持,源程序里多写两句话就搞定的事情,不过OpenMP建立的是轻量级进程(在Windows下叫线程的东西)。
如果要用严格意义上的“进程”实现,还有一个多线程并行的工具是MPICH2,设计目的是多计算机分布式并行计算的,当然也能用在单一计算机上。
‘叁’ linux 进程调度和同步一样吗
首先你得指导进程的调度和同步分别是什么,去查查
‘肆’ linux线程同步和进程同步的区别
(1)管道(pipe)和有名管道(FIFO) (2)信号(signal) (3)消息队列 (4)共享内存 (5)信号量 (6)套接字(socket)
‘伍’ 在linux下用c语言实现用多进程同步方法演示“生产者-消费者”问题
这个问题需要的知识主要包括:
1 多进程间进行通信;
2 使用同步信号量(semaphore)和互斥信号量(mutex)进行数据保护。
参考代码如下,可以参照注释辅助理解:
#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<pthread.h>
#include<semaphore.h>
#defineN2//消费者或者生产者的数目
#defineM10//缓冲数目
intin=0;//生产者放置产品的位置
intout=0;//消费者取产品的位置
intbuff[M]={0};//缓冲初始化为0,开始时没有产品
sem_tempty_sem;//同步信号量,当满了时阻止生产者放产品
sem_tfull_sem;//同步信号量,当没产品时阻止消费者消费
pthread_mutex_tmutex;//互斥信号量,一次只有一个线程访问缓冲
intproct_id=0;//生产者id
intprochase_id=0;//消费者id
/*打印缓冲情况*/
voidprint()
{
inti;
for(i=0;i<M;i++)
printf("%d",buff[i]);
printf(" ");
}
/*生产者方法*/
void*proct()
{
intid=++proct_id;
while(1)
{
//用sleep的数量可以调节生产和消费的速度,便于观察
sleep(1);
//sleep(1);
sem_wait(&empty_sem);
pthread_mutex_lock(&mutex);
in=in%M;
printf("proct%din%d.like: ",id,in);
buff[in]=1;
print();
++in;
pthread_mutex_unlock(&mutex);
sem_post(&full_sem);
}
}
/*消费者方法*/
void*prochase()
{
intid=++prochase_id;
while(1)
{
//用sleep的数量可以调节生产和消费的速度,便于观察
sleep(1);
//sleep(1);
sem_wait(&full_sem);
pthread_mutex_lock(&mutex);
out=out%M;
printf("prochase%din%d.like: ",id,out);
buff[out]=0;
print();
++out;
pthread_mutex_unlock(&mutex);
sem_post(&empty_sem);
}
}
intmain()
{
pthread_tid1[N];
pthread_tid2[N];
inti;
intret[N];
//初始化同步信号量
intini1=sem_init(&empty_sem,0,M);
intini2=sem_init(&full_sem,0,0);
if(ini1&&ini2!=0)
{
printf("seminitfailed ");
exit(1);
}
//初始化互斥信号量
intini3=pthread_mutex_init(&mutex,NULL);
if(ini3!=0)
{
printf("mutexinitfailed ");
exit(1);
}
//创建N个生产者线程
for(i=0;i<N;i++)
{
ret[i]=pthread_create(&id1[i],NULL,proct,(void*)(&i));
if(ret[i]!=0)
{
printf("proct%dcreationfailed ",i);
exit(1);
}
}
//创建N个消费者线程
for(i=0;i<N;i++)
{
ret[i]=pthread_create(&id2[i],NULL,prochase,NULL);
if(ret[i]!=0)
{
printf("prochase%dcreationfailed ",i);
exit(1);
}
}
//销毁线程
for(i=0;i<N;i++)
{
pthread_join(id1[i],NULL);
pthread_join(id2[i],NULL);
}
exit(0);
}
在Linux下编译的时候,要在编译命令中加入选项-lpthread以包含多线程支持。比如存储的C文件为demo.c,要生成的可执行文件为demo。可以使用命令:
gcc demo.c -o demo -lpthread
程序中为便于观察,使用了sleep(1);来暂停运行,所以查看输出的时候可以看到,输出是每秒打印一次的。
‘陆’ linux 下进程间的同步机制有哪些
感觉你提问的应该是进程间的通信。而通讯主要有以下6中方式:
1.管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
2.信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期 信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上, 该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,sigaction函数重新实现了signal函数);
3.报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
4.共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针其他通信机制运行效率较低设计的。往往与其它通信机制,如信号量结合使用, 来达到进程间的同步及互斥。
5.信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
6.套接字(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix 系统上:Linux和System V的变种都支持套接字。
‘柒’ linux进程间同步有没有好的方法
linux进程同步有很多标准方法:信号量、共享内存、消息队列、有名管道,可以看看《unix网络编程:进程间通信》
‘捌’ linux下一个程序建立多个进程,如何保证多个子进程同步。
你可以看看linux操作系统原理相关书籍,里面有介绍进程管理的,有关于同步于互斥的处理方法。如:临界资源,临界区,p v 原语等
‘玖’ Linux进程同步
(1)管道(pipe)和有名管道(FIFO)
(2)信号(signal)
(3)消息队列
(4)共享内存
(5)信号量
(6)套接字(socket)
‘拾’ 在LInux下怎么样进行父子进程同步
/*
* 使用信号实现父子进程之间的同步
*
* TELL_WAIT(): set things up for TELL_xxx & WAIT_xxx
* TELL_PARENT(): tell parent we are done
* WAIT_PARENT(): wait for parent
* TELL_CHILD(): tell child we are done
* WAIT_CHILD(): wait for child
*
* SIGUSR1: the signal parent sends to child
* SIGUSR2: the signal child sends to parent
*/
#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
#include <stdio.h>
static volatile sig_atomic_t sigflag;
static sigset_t newmask, oldmask, zeromask;
/* signal handler for SIGUSR1 and SIGUSR2 */
static void sig_usr(int signo)
{
sigflag = 1;
return;
}
void TELL_WAIT()
{
if(signal(SIGUSR1, sig_usr) == SIG_ERR)
printf("signal SIGUSR1 error\n");
if(signal(SIGUSR2, sig_usr) == SIG_ERR)
printf("signal SIGUSR2 error\n");
sigemptyset(&zeromask);
sigemptyset(&newmask);
sigaddset(&newmask, SIGUSR1);
sigaddset(&newmask, SIGUSR2);
/* block SIGUSR1 and SIGUSR2, and save current signal mask */
if(sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
printf("SIG_BLOCK error\n");
}
void TELL_PARENT(pid_t pid)
{
kill(pid, SIGUSR2); /* tell parent we are done */
}
void WAIT_PARENT()
{
while(sigflag == 0)
sigsuspend(&zeromask); /* wait for parent */
sigflag = 0;
/* reset signal mask */
if(sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
printf("SIG_SETMASK error\n");
}
void TELL_CHILD(pid_t pid)
{
kill(pid, SIGUSR1);
}
void WAIT_CHILD()
{
while(sigflag == 0)
sigsuspend(&zeromask); /* wait for parent */
sigflag = 0;
/* reset signal mask */
if(sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
printf("SIG_SETMASK error\n");
}
void do_task(char *task_str)
{
printf("%s\n", task_str);
}
/* parent goes first program */
int main()
{
pid_t pid;
TELL_WAIT();
pid = fork();
if(pid < 0) {
printf("fork error\n");
}
else if(pid == 0) {
WAIT_PARENT();
do_task("child task\n");
}
else {
do_task("parent task\n");
TELL_CHILD(pid);
}
return 0;
}
/* child goes first program*/
int main()
{
pid_t pid;
TELL_WAIT();
pid = fork();
if(pid < 0) {
printf("fork error\n");
}
else if(pid == 0) {
do_task("child task\n");
TELL_PARENT(getppid());
}
else {
WAIT_CHILD();
do_task("parent task\n");
}
return 0;
}
/*
* 使用管道实现父子进程同步
*
* 父进程在调用TELL_CHILD 时经由上一个管道写一个字符p,子进程在
* 调用TELL_PARENT时,经由下一个管道写一个字符c。相应的WAIT_XXX
* 函数调用read读一个字符,没有读到字符时阻塞(睡眠等待)。
*
*/
static int pfd1[2], pfd[2];
void TELL_WAIT()
{
if(pipe(pfd1) < 0 || pipe(pfd2) < 0)
printf("pipe error\n");
}
void TELL_PARENT(pid_t pid)
{
if(write(pfd2[1], "c", 1) != 1)
printf("write error\n");
}
void WAIT_PARENT()
{
char c;
if(read(pfd1[0], &c, 1) != 1)
printf("read error\n");
if(c != 'p')
printf("WAIT_PARENT: incorrect data\n");
}
void TELL_CHILD(pid_t pid)
{
if(write(pfd1[1], "p", 1) != 1)
printf("write error\n");
}
void WAIT_CHILD()
{
char c;
if(read(pfd1[0], &c, 1) != 1)
printf("read error\n");
if(c != 'c')
printf("WAIT_CHILD: incorrect data\n");
}