当前位置:首页 » 操作系统 » semaphorelinux

semaphorelinux

发布时间: 2022-03-02 05:08:20

A. linux 信号量操作函数

semget()
可以使用系统调用semget()创建一个新的信号量集,或者存取一个已经存在的信号量集:
系统调用:semget();
原型:intsemget(key_t key,int nsems,int semflg);
返回值:如果成功,则返回信号量集的IPC标识符。如果失败,则返回-1:errno=EACCESS(没有权限)
EEXIST(信号量集已经存在,无法创建)
EIDRM(信号量集已经删除)
ENOENT(信号量集不存在,同时没有使用IPC_CREAT)
ENOMEM(没有足够的内存创建新的信号量集)
ENOSPC(超出限制)
系统调用semget()的第一个参数是关键字值(一般是由系统调用ftok()返回的)。系统内核将此值和系统中存在的其他的信号量集的关键字值进行比 较。打开和存取操作与参数semflg中的内容相关。IPC_CREAT如果信号量集在系统内核中不存在,则创建信号量集。IPC_EXCL当和 IPC_CREAT一同使用时,如果信号量集已经存在,则调用失败。如果单独使用IPC_CREAT,则semget()要么返回新创建的信号量集的标识 符,要么返回系统中已经存在的同样的关键字值的信号量的标识符。如果IPC_EXCL和IPC_CREAT一同使用,则要么返回新创建的信号量集的标识 符,要么返回-1。IPC_EXCL单独使用没有意义。参数nsems指出了一个新的信号量集中应该创建的信号量的个数。信号量集中最多的信号量的个数是 在linux/sem.h中定义的:
#defineSEMMSL32/*<=512maxnumofsemaphoresperid*/
下面是一个打开和创建信号量集的程序:
intopen_semaphore_set(key_t keyval,int numsems)
{
intsid;
if(!numsems)
return(-1);
if((sid=semget(mykey,numsems,IPC_CREAT|0660))==-1)
{
return(-1);
}
return(sid);
}
};
==============================================================
semop()
系统调用:semop();
调用原型:int semop(int semid,struct sembuf*sops,unsign ednsops);
返回值:0,如果成功。-1,如果失败:errno=E2BIG(nsops大于最大的ops数目)
EACCESS(权限不够)
EAGAIN(使用了IPC_NOWAIT,但操作不能继续进行)
EFAULT(sops指向的地址无效)
EIDRM(信号量集已经删除)
EINTR(当睡眠时接收到其他信号)
EINVAL(信号量集不存在,或者semid无效)
ENOMEM(使用了SEM_UNDO,但无足够的内存创建所需的数据结构)
ERANGE(信号量值超出范围)
第一个参数是关键字值。第二个参数是指向将要操作的数组的指针。第三个参数是数组中的操作的个数。参数sops指向由sembuf组成的数组。此数组是在linux/sem.h中定义的:
/*semop systemcall takes an array of these*/
structsembuf{
ushortsem_num;/*semaphore index in array*/
shortsem_op;/*semaphore operation*/
shortsem_flg;/*operation flags*/
sem_num将要处理的信号量的个数。
sem_op要执行的操作。
sem_flg操作标志。
如果sem_op是负数,那么信号量将减去它的值。这和信号量控制的资源有关。如果没有使用IPC_NOWAIT,那么调用进程将进入睡眠状态,直到信号 量控制的资源可以使用为止。如果sem_op是正数,则信号量加上它的值。这也就是进程释放信号量控制的资源。最后,如果sem_op是0,那么调用进程 将调用sleep(),直到信号量的值为0。这在一个进程等待完全空闲的资源时使用。

B. 为什么要设置linux semaphore参数

通过ipcs -s 可以看到SEMAPHORE,在这里可以看到NSEMS是254(环境基于RHEL 6(32BIT),ORACLE DATABASE 11.2.0.1.0)
[root@hy1 oracle]# ipcs -s
------ Semaphore Arrays --------
key semid owner perms nsems
0x39c3211c 1671170 oracle 660 254
这个254表示什么呢?是ORACLE进程数吗?
[root@hy1 oracle]# ps -eaf | grep oracle | wc -l
50
可能看到整个ORACLE用户的进程只有 50
经常官方文档建议这个参数设置为PROCESSES再加150,那么这个参数和PROCESSES应该有关,

SQL> show parameter processes;
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
processes integer 250

在这里PROCESSES为250,其他的4代表什么呢?
使用oradebug ipc可以跟踪当前的IPC情况

Maximum processes: = 250
Number of semaphores per set: = 254
Semaphores key overhead per set: = 4
User Semaphores per set: = 250
Number of semaphore sets: = 1
Semaphore identifiers: = 1
Semaphore List=
1671170
可以看到4为SEAMPHORE本身的开销,再加上PROCESSES定义的大小,刚好是254
kernel.semmsl 定义了一个信号集的信号数,这个参数设置建议为PROCESSES+150,当然系统的默认设置128也不会有问题
但是需要请求多个信号集,从某种程度上来说降低了效率
kernel.semopm定义了每次信号函数能操作的最大信号数,建议和semmsl相等,这样一次调用就能完成所有的集号操作,而不
需要多次调用
kernel.semmni定了系统中的信号集的个数,一般125足够用了
kernel.semmns定义了系统中最大信号数,建议值为 kernel.semmsl * kernel.semmni.

需要注意的是不要弄混信号和信号集的概念。

C. linux编程时的信号量问题。 我以前用过的信号量头文件是<semaphore.h>,而现在又发现还有个<sys/sem.h>

semaphore.h 提供的是 POSIX 标准定义的 semaphore 接口 ( sem_open, sem_wait, ...) ,这组接口使用更简单,设计的较好。

而 sys/sem.h 里 提供的是符合 System V 标准的 semaphore接口 (semget, semop, ...),这些接口都比较老了, linux提供主要是为了兼容老代码。

对于 linux 开发来说,新写的代码,都应该考虑采用 POSIX 标准的信号量。

D. Linux 中编程的 semaphore结构体在哪个头文件中

semaphore.h定义的是内核里用semaphore,用户态程序用的sem_t也在名叫semaphore.h的文件里定义,不过应该在系统的include目录下,而不是在内核源代码了

E. linux mutex互斥体和semaphore信号量的区别

  1. mutex保护的资源在同一时刻只允许一个task进行访问;semaphore根据初始值n可以允许至多n个task访问。

  2. semaphore可以实现“等待”机制,一种常见的场景是task0进入阻塞状态“等待”某个事件发生,task1触发事件后“唤醒”task0。task0在“等待”时处于阻塞状态而不是运行状态,因此不会浪费CPU时间。而一个task在拿到mutex之后释放之前不宜进行太长时间的操作,更不能阻塞。

F. Linux信号 机制和Linux信号量机制的区别

首先,一句话总结它们之间的区别:

字面上相似,但是本质上存在巨大的差别!请看详细解答...
Linux信号(signal) 机制

signal,又简称为信号(软中断信号)用来通知进程发生了异步事件。

原理:

一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是进程间通信机制中唯一的异步通信机制,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。进程之间可以互相通过系统调用kill发送软中断信号。内核也可以因为内部事件而给进程发送信号,通知进程发生了某个事件。信号机制除了基本通知功能外,还可以传递附加信息。

分类:
从两个不同的分类角度对信号进行:
可靠性方面:可靠信号与不可靠信号;
与时间的关系上:实时信号与非实时信号。

部分定义转自:http://www.cnblogs.com/hoys/archive/2012/08/19/2646377.html

Linux信号量(semaphore)机制
Linux内核的信号量用来操作系统进程间同步访问共享资源。

原理:信号量在创建时需要设置一个初始值,表示同时可以有几个任务可以访问该信号量保护的共享资源,初始值为1就变成互斥锁(Mutex),即同时只能有一个任务可以访问信号量保护的共享资源。
一个任务要想访问共享资源,首先必须得到信号量,获取信号量的操作将把信号量的值减1,若当前信号量的值为负数,表明无法获得信号量,该任务必须挂起在该信号量的等待队列等待该信号量可用;若当前信号量的值为非负数,表示可以获得信号量,因而可以立刻访问被该信号量保护的共享资源。
当任务访问完被信号量保护的共享资源后,必须释放信号量,释放信号量通过把信号量的值加1实现,如果信号量的值为非正数,表明有任务等待当前信号量,因此它也唤醒所有等待该信号量的任务。

常用的信号量的API:

DECLARE_MUTEX(name)

该宏声明一个信号量name并初始化它的值为0,即声明一个互斥锁。
DECLARE_MUTEX_LOCKED(name)

该宏声明一个互斥锁name,但把它的初始值设置为0,即锁在创建时就处在已锁状态。因此对于这种锁,一般是先释放后获得。
void sema_init (struct semaphore *sem, int val);

该函用于数初始化设置信号量的初值,它设置信号量sem的值为val。
void init_MUTEX (struct semaphore *sem);

该函数用于初始化一个互斥锁,即它把信号量sem的值设置为1。
void init_MUTEX_LOCKED (struct semaphore *sem);

该函数也用于初始化一个互斥锁,但它把信号量sem的值设置为0,即一开始就处在已锁状态。
void down(struct semaphore * sem);

该函数用于获得信号量sem,它会导致睡眠,因此不能在中断上下文(包括IRQ上下文和softirq上下文)使用该函数。该函数将把sem的值减1,如果信号量sem的值非负,就直接返回,否则调用者将被挂起,直到别的任务释放该信号量才能继续运行。
int down_interruptible(struct semaphore * sem);

该函数功能与down类似,不同之处为,down不会被信号(signal)打断,但down_interruptible能被信号打断,因此该函数有返回值来区分是正常返回还是被信号中断,如果返回0,表示获得信号量正常返回,如果被信号打断,返回-EINTR。
int down_trylock(struct semaphore * sem);

该函数试着获得信号量sem,如果能够立刻获得,它就获得该信号量并返回0,否则,表示不能获得信号量sem,返回值为非0值。因此,它不会导致调用者睡眠,可以在中断上下文使用。
void up(struct semaphore * sem);

该函数释放信号量sem,即把sem的值加1,如果sem的值为非正数,表明有任务等待该信号量,因此唤醒这些等待者。

实例:
信号量在绝大部分情况下作为互斥锁使用,下面以console驱动系统为例说明信号量的使用。

在内核源码树的kernel/printk.c中,使用宏DECLARE_MUTEX声明了一个互斥锁console_sem,它用于保护console驱动列表console_drivers以及同步对整个console驱动系统的访问。

G. linux中mutex和semaphore的区别

mutex互斥体只用于保护临界区的代码(访问共享资源),而不用于锁之间的同步,即一个线程释放mutex锁后,马上又可能获取同一个锁,而不管其它正在等待该mutex锁的其它线程。
semaphore信号量除了起到保护临界区的作用外,还用于锁同步的功能,即一个线程释放semaphore后,会保证正在等待该semaphore的线程优先执行,而不会马上在获取同一个semaphore。
如果两个线程想通过一个锁达到输出1,2,1,2,1,2这样的序列,应使用semaphore, 而使用mutex的结果可能为1,1,1,1,1,2,2,2,111.....。

H. spinlock 和 Semaphore信号量的区别

Mutex是一把钥匙,一个人拿了就可进入一个房间,出来的时候把钥匙交给队列的第一个。一般的用法是用于串行化对critical section代码的访问,保证这段代码不会被并行的运行。

Semaphore是一件可以容纳N人的房间,如果人不满就可以进去,如果人满了,就要等待有人出来。对于N=1的情况,称为binary semaphore。一般的用法是,用于限制对于某一资源的同时访问。

Binary semaphore与Mutex的差异:

在有的系统中Binary semaphore与Mutex是没有差异的。在有的系统上,主要的差异是mutex一定要由获得锁的进程来释放。而semaphore可以由其它进程释放(这时的semaphore实际就是个原子的变量,大家可以加或减),因此semaphore可以用于进程间同步。Semaphore的同步功能是所有系统都支持的,而Mutex能否由其他进程释放则未定,因此建议mutex只用于保护critical section。而semaphore则用于保护某变量,或者同步。

另一个概念是spin lock,这是一个内核态概念。spin lock与semaphore的主要区别是spin lock是busy waiting,而semaphore是sleep。对于可以sleep的进程来说,busy waiting当然没有意义。对于单CPU的系统,busy waiting当然更没意义(没有CPU可以释放锁)。因此,只有多CPU的内核态非进程空间,才会用到spin lock。Linux kernel的spin lock在非SMP的情况下,只是关irq,没有别的操作,用于确保该段程序的运行不会被打断。其实也就是类似mutex的作用,串行化对critical section的访问。但是mutex不能保护中断的打断,也不能在中断处理程序中被调用。而spin lock也一般没有必要用于可以sleep的进程空间。
---------------------------------------------------------------------------------------------

内核同步措施
为了避免并发,防止竞争。内核提供了一组同步方法来提供对共享数据的保护。 我们的重点不是介绍这些方法的详细用法,而是强调为什么使用这些方法和它们之间的差别。
Linux 使用的同步机制可以说从2.0到2.6以来不断发展完善。从最初的原子操作,到后来的信号量,从大内核锁到今天的自旋锁。这些同步机制的发展伴随 Linux从单处理器到对称多处理器的过度;伴随着从非抢占内核到抢占内核的过度。锁机制越来越有效,也越来越复杂。
目前来说内核中原子操作多用来做计数使用,其它情况最常用的是两种锁以及它们的变种:一个是自旋锁,另一个是信号量。我们下面就来着重介绍一下这两种锁机制。

自旋锁

自旋锁是专为防止多处理器并发而引入的一种锁,它在内核中大量应用于中断处理等部分(对于单处理器来说,防止中断处理中的并发可简单采用关闭中断的方式,不需要自旋锁)。
自旋锁最多只能被一个内核任务持有,如果一个内核任务试图请求一个已被争用(已经被持有)的自旋锁,那么这个任务就会一直进行忙循环——旋转——等待锁重新可用。要是锁未被争用,请求它的内核任务便能立刻得到它并且继续进行。自旋锁可以在任何时刻防止多于一个的内核任务同时进入临界区,因此这种锁可有效地避免多处理器上并发运行的内核任务竞争共享资源。
事实上,自旋锁的初衷就是:在短期间内进行轻量级的锁定。一个被争用的自旋锁使得请求它的线程在等待锁重新可用的期间进行自旋(特别浪费处理器时间),所以自旋锁不应该被持有时间过长。如果需要长时间锁定的话, 最好使用信号量。
自旋锁的基本形式如下:
spin_lock(&mr_lock);
//临界区
spin_unlock(&mr_lock);
因为自旋锁在同一时刻只能被最多一个内核任务持有,所以一个时刻只有一个线程允许存在于临界区中。这点很好地满足了对称多处理机器需要的锁定服务。在单处理器上,自旋锁仅仅当作一个设置内核抢占的开关。如果内核抢占也不存在,那么自旋锁会在编译时被完全剔除出内核。
简单的说,自旋锁在内核中主要用来防止多处理器中并发访问临界区,防止内核抢占造成的竞争。另外自旋锁不允许任务睡眠(持有自旋锁的任务睡眠会造成自死锁——因为睡眠有可能造成持有锁的内核任务被重新调度,而再次申请自己已持有的锁),它能够在中断上下文中使用。
死锁:假设有一个或多个内核任务和一个或多个资源,每个内核都在等待其中的一个资源,但所有的资源都已经被占用了。这便会发生所有内核任务都在相互等待,但它们永远不会释放已经占有的资源,于是任何内核任务都无法获得所需要的资源,无法继续运行,这便意味着死锁发生了。自死琐是说自己占有了某个资源,然后自己又申请自己已占有的资源,显然不可能再获得该资源,因此就自缚手脚了。

信号量
Linux中的信号量是一种睡眠锁。如果有一个任务试图获得一个已被持有的信号量时,信号量会将其推入等待队列,然后让其睡眠。这时处理器获得自由去执行其它代码。当持有信号量的进程将信号量释放后,在等待队列中的一个任务将被唤醒,从而便可以获得这个信号量。
信号量的睡眠特性,使得信号量适用于锁会被长时间持有的情况;只能在进程上下文中使用,因为中断上下文中是不能被调度的;另外当代码持有信号量时,不可以再持有自旋锁。
信号量基本使用形式为:
static DECLARE_MUTEX(mr_sem);//声明互斥信号量
if(down_interruptible(&mr_sem))
//可被中断的睡眠,当信号来到,睡眠的任务被唤醒
//临界区
up(&mr_sem);

信号量和自旋锁区别
虽然听起来两者之间的使用条件复杂,其实在实际使用中信号量和自旋锁并不易混淆。注意以下原则:
如果代码需要睡眠——这往往是发生在和用户空间同步时——使用信号量是唯一的选择。由于不受睡眠的限制,使用信号量通常来说更加简单一些。如果需要在自旋锁和信号量中作选择,应该取决于锁被持有的时间长短。理想情况是所有的锁都应该尽可能短的被持有,但是如果锁的持有时间较长的话,使用信号量是更好的选择。另外,信号量不同于自旋锁,它不会关闭内核抢占,所以持有信号量的代码可以被抢占。这意味者信号量不会对影响调度反应时间带来负面影响。

自旋锁对信号量

需求 建议的加锁方法
低开销加锁 优先使用自旋锁
短期锁定 优先使用自旋锁
长期加锁 优先使用信号量
中断上下文中加锁 使用自旋锁
持有锁是需要睡眠、调度 使用信号量

I. 急!LINUX下,GCC编译,原程序包含<semaphore.h>头文件,为什么编译时说sem_wait,sem_post等未定义的引用

编译时加上参数:-lpthread

要看报错的阶段,是在编译还是链接阶段.
如果编译时函数没有找到,那是头文件的问题,如果链接时未定义引用,那是c库的问题.
如果你的头文件都正常包含了,那可能你的c库没有使能semaphore的支持.

J. linux 信号量是什么怎么用

Linux信号量(semaphore)是一种互斥机制。即对某个互斥资源的访问会收到信号量的保护,在访问之前需要获得信号量。
在操作完共享资源后,需释放信号量,以便另外的进程来获得资源。获得和释放应该成对出现。
获得信号量集,需要注意的是,获得的是一个集合,而不是一个单一的信号量。
#include
#include
#include
1: int semget(key_t key,int nsems,int semflg);
key:系统根据这个值来获取信号量集。
nsems:此信号集包括几个信号量。
semflg:创建此信号量的属性。 (IPC_CREAT | IPC_EXCL | S_IRUSR | S_IWUSR)
成功则返回该信号量集的ID。
注:
既指定IPC_CREAT又指定IPC_EXCL时,如果系统中该信号量集已经存在,则马上返回。
如果需要获得存在的信号量,则将此参数置0.
2: int semctl(int semid,int senum,int cmd....)
semid:信号量ID。
senum:对信号量集中的第几个信号量进行控制。(从0开始)
cmd:需要进行的操作。(SETVAL是其中的一个)。
根据cmd的不同可能存在第四个参数,cmd=SETVAL时,表示同时信号量可以被获得几次,如第四个参数
num=1表示只能被获得一次,既被信号量保护的资源只能同时被一个程序使用。
该系统调用,是在对信号量初始化时用的。
-3: “3”前面加了"-"表示当需要使用互斥资源时应该做这步。
int semop(int semid,struct sembuf *sem,int num_elements);
struct sembuf {
unsigned short sem_num; //该信号量集中的第几个信号量。
int sem_op;//需要获得还是释放信号量
int sem_flg;//相关动作
};
num_elements:需要对该信号量集中的多少个信号量进行处理。
获得信号量时,将sembuf结构提初始化为:
sem_num = 0; //该信号量集中的首个信号量
sem_op = -1; //获得信号量
sem_flag = IPC_NOWAIT; //如果不能获得信号量,马上返回。
semop(semid,_sem,1);
同理释放信号量时,将sem_op设为1.
以上是对信号量的简单处理

热点内容
盘搜搜源码 发布:2024-09-23 04:15:37 浏览:862
java四种线程池 发布:2024-09-23 04:13:49 浏览:717
凯撒加密c语言 发布:2024-09-23 04:07:37 浏览:257
ftp上传模板 发布:2024-09-23 03:48:38 浏览:39
手机短信怎么从安卓同步到ios 发布:2024-09-23 03:46:59 浏览:563
c语言百马百担 发布:2024-09-23 03:45:36 浏览:768
我的世界服务器中主城传送指令 发布:2024-09-23 03:40:55 浏览:38
xp系统如何知道电脑配置 发布:2024-09-23 03:36:53 浏览:580
chrome缓存页面 发布:2024-09-23 03:28:35 浏览:981
安卓n81能装什么软件 发布:2024-09-23 03:26:17 浏览:626