核的算法
㈠ 在svm算法中引入核函数,核函数是什么意思
可以看做是空间映射
把高纬上千维的空间映射到低纬,依然能够保持良好的分类能力
㈡ 多核CPU调度有哪几种算法 比如单核的有优先级、先来先服务。那多核的有哪几种呢
一般多核任务调度算法有全局队列调度和局部队列调度。前者是指操作系统维护一个全局的任务等待队列,当系统中有一个CPU核心空闲时,操作系统就从全局任务等待队列中选取就绪任务开始在此核心上执行。这种方法的优点是CPU核心利用率较高。后者是指操作系统为每个CPU内核维护一个局部的任务等待队列,当系统中有一个CPU内核空闲时,便从该核心的任务等待队列中选取恰当的任务执行,这种方法的优点是任务基本上无需在多个CPU核心间切换,有利于提高CPU核心局部Cache命中率。目前多数多核CPU操作系统采用的是基于全局队列的任务调度算法。
㈢ 核函数有哪些
核函数包括线性核函数、多项式核函数、高斯核函数等,其中高斯核函数最常用,可以将数据映射到无穷维,也叫做径向基函数(Radial Basis Function 简称 RBF),是某种沿径向对称的标量函数。[1] 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数,可记作 k(||x-xc||), 其作用往往是局部的,即当x远离xc时函数取值很小。
分类
核函数的选择要求满足Mercer定理(Mercer's theorem),即核函数在样本空间内的任意格拉姆矩阵(Gram matrix)为半正定矩阵(semi-positive definite)。常用的核函数有:线性核函数,多项式核函数,径向基核函数,Sigmoid核函数和复合核函数,傅立叶级数核,B样条核函数和张量积核函数等[2] 。
平稳和各向同性核函数
具有平稳性(stationarity)的核函数仅是特征空间下样本间向量的函数,对指数集的平移变换保持不变(translation invariant)。若样本的协方差与其向量的方向无关,即仅与距离有关,则可使用具有各向同性(isotropy)的核函数。很多核函数同时满足平稳性和各向同性,这里给出其常见例子[3] :
1. 径向基函数核(RBF kernel)
式中,为RBF核的超参数,定义了学习样本间相似性的特征长度尺度(characteristic length-scale),即权重空间视角下特征空间映射前后样本间距离的比例[3] 。
2. 马顿核(Matérn kernel)
式中为核函数的超参数,为修正贝塞尔函数(modified Bessel function)。由修正贝塞尔函数的定义可知,马顿核是指数函数与多项式函数的乘积,其可导性,或平滑程度与有关,的常见选择为1.5和2.5。当时,马顿核等价于以为特征尺度的RBF核[3] 。
3. 指数函数核(exponential kernel)
指数函数核是马顿核在的特殊形式,通常对应奥恩斯坦-乌伦贝克过程(Ornstein-Uhlenbeck Process, OU)。OU过程是一个连续但不平滑(均方不可导)的随机过程。其对应的数学模型是维纳过程(Wiener process)下质点运动的速度[3] 。
4. 二次有理函数核(rational quadratic kernel, RQ kernel)
式中为超参数。可以证明,RQ核是无穷个RBF核的线性叠加,当趋于无穷时,RQ核等价于以为特征尺度的RBF核[3] 。
其它
1. 周期核函数(periodickernel)
平稳核函数可以用于构建周期核函数:式中,表示该核函数具有的周期,例如由RBF核得到的周期核的形式为:。
2. 内积核函数(dot proct kernel)
内积核函数也被称为多项式核函数,其形式为:,式中表示多项式的阶数[3] 。
3. 各向异性核函数
对各向同性核函数,定义可将各向同性核函数转化为各向异性核函数,式中是表征各向异性的函数,其格拉姆矩阵的对角元素表示对不同维度所取的不同尺度[3] 。
理论
根据模式识别理论,低维空间线性不可分的模式通过非线性映射到高维特征空间则可能实现线性可分,但是如果直接采用这种技术在高维空间进行分类或回归,则存在确定非线性映射函数的形式和参数、特征空间维数等问题,而最大的障碍则是在高维特征空间运算时存在的“维数灾难”。采用核函数技术可以有效地解决这样问题。
设x,z∈X,X属于R(n)空间,非线性函数Φ实现输入空间X到特征空间F的映射,其中F属于R(m),n<<m。根据核函数技术有:
K(x,z) =<Φ(x),Φ(z) > (1)
其中:<, >为内积,K(x,z)为核函数。从式(1)可以看出,核函数将m维高维空间的内积运算转化为n维低维输入空间的核函数计算,从而巧妙地解决了在高维特征空间中计算的“维数灾难”等问题,从而为在高维特征空间解决复杂的分类或回归问题奠定了理论基础。
性质
核函数具有以下性质[4] :
(1)核函数的引入避免了“维数灾难”,大大减小了计算量。而输入空间的维数n对核函数矩阵无影响,因此,核函数方法可以有效处理高维输入。
(2)无需知道非线性变换函数Φ的形式和参数.
(3)核函数的形式和参数的变化会隐式地改变从输入空间到特征空间的映射,进而对特征空间的性质产生影响,最终改变各种核函数方法的性能。
(4)核函数方法可以和不同的算法相结合,形成多种不同的基于核函数技术的方法,且这两部分的设计可以单独进行,并可以为不同的应用选择不同的核函数和算法[5] 。
㈣ 什么叫C++的核心算法啊,报告中要求写核心算法
就是主要算法。
㈤ 什么是 核方法 kernal 通俗
核方法kernel methods (KMs)是一类模式识别的算法。其目的是找出并学习一组数据中的相互的关系。用途较广的核方法有支持向量机、高斯过程等。
核方法是解决非线性模式分析问题的一种有效途径,其核心思想是:首先,通过某种非线性映射将原始数据嵌入到合适的高维特征空间;然后,利用通用的线性学习器在这个新的空间中分析和处理模式。
相对于使用通用非线性学习器直接在原始数据上进行分析的范式,核方法有明显的优势:
首先,通用非线性学习器不便反应具体应用问题的特性,而核方法的非线性映射由于面向具体应用问题设计而便于集成问题相关的先验知识。
再者,线性学习器相对于非线性学习器有更好的过拟合控制从而可以更好地保证泛化性能。
还有,很重要的一点是核方法还是实现高效计算的途径,它能利用核函数将非线性映射隐含在线性学习器中进行同步计算,使得计算复杂度与高维特征空间的维数无关。
核方法kernel methods (KMs)是一类模式识别的算法。其目的是找出并学习一组数据中的相互的关系。用途较广的核方法有支持向量机、高斯过程等。
--------------
本文对核方法(kernel method)进行简要的介绍。
核方法的主要思想是基于这样一个假设:“在低维空间中不能线性分割的点集,通过转化为高维空间中的点集时,很有可能变为线性可分的” ,例如下图
左图的两类数据要想在一维空间上线性分开是不可能的,然而通过F(x)=(x-a)(x-b)把一维空间上的点转化为右图上的二维空间上,就是可以线性分割的了。
然而,如果直接把低维度的数据转化到高维度的空间中,然后再去寻找线性分割平面,会遇到两个大问题,一是由于是在高维度空间中计算,导致curse of dimension问题;二是非常的麻烦,每一个点都必须先转换到高维度空间,然后求取分割平面的参数等等;怎么解决这些问题?答案是通过核戏法(kernel trick)。
(pku, shinningmonster, sewm)
Kernel Trick: 定义一个核函数K(x1,x2) = <\phi(x1), \phi(x2)>, 其中x1和x2是低维度空间中点(在这里可以是标量,也可以是向量),\phi(xi)是低维度空间的点xi转化为高维度空间中的点的表示,< , > 表示向量的内积。
这里核函数K(x1,x2)的表达方式一般都不会显式地写为内积的形式,即我们不关心高维度空间的形式。核函数巧妙地解决了上述的问题,在高维度中向量的内积通过低维度的点的核函数就可以计算了。这种技巧被称为Kernel trick。这里还有一个问题:“为什么我们要关心向量的内积?”,一般地,我们可以把分类(或者回归)的问题分为两类:参数学习的形式和基于实例的学习形式。
参数学习的形式就是通过一堆训练数据,把相应模型的参数给学习出来,然后训练数据就没有用了,对于新的数据,用学习出来的参数即可以得到相应的结论;
而基于实例的学习(又叫基于内存的学习)则是在预测的时候也会使用训练数据,如KNN算法。而基于实例的学习一般就需要判定两个点之间的相似程度,一般就通过向量的内积来表达。从这里可以看出,核方法不是万能的,它一般只针对基于实例的学习。
紧接着,我们还需要解决一个问题,即核函数的存在性判断和如何构造? 既然我们不关心高维度空间的表达形式,那么怎么才能判断一个函数是否是核函数呢?
Mercer 定理:任何半正定的函数都可以作为核函数。所谓半正定的函数f(xi,xj),是指拥有训练数据集合(x1,x2,...xn),我们定义一个矩阵的元素aij = f(xi,xj),这个矩阵式n*n的,如果这个矩阵是半正定的,那么f(xi,xj)就称为半正定的函数。这个mercer定理不是核函数必要条件,只是一个充分条件,即还有不满足mercer定理的函数也可以是核函数。常见的核函数有高斯核,多项式核等等,在这些常见核的基础上,通过核函数的性质(如对称性等)可以进一步构造出新的核函数。SVM是目前核方法应用的经典模型。
上述是目前我所理解到的核方法的主要精神。
㈥ 下面哪些是基于核的机器学习算法
实施计划包括诱导决策树,规则学习,模型树发电机,支持向量机,局部加权回归,基于实例的学习,装袋,促进和堆叠。还包括聚类方法,学习者的关联规则。
㈦ 核矩阵是什么
每两个样本之间进行一次核函数影射得到的点的合集。
核矩阵定义了世界的分类。在这个核矩阵里,矩阵里每个点的值是两个X世界点的线性内积。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵
㈧ 核密度分析是什么
核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。
Ruppert和Cline基于数据集密度函数聚类算法提出修订的核密度估计方法。
一些比较常用的核函数:
均匀核函数 k(x)=1/2,-1≤x≤1 加入带宽h后: kh(x)=1/(2h),-h≤x≤h。
三角核函数k(x)=1-|x|,-1≤x≤1 加入带宽h后: kh(x)=(h-|x|)/h2,-h≤x≤h。
伽马核函数 kxi(x)=(xα-1e-xα/xi)/[(xi/α)α.Γ(α)]。
高斯核函数K(x,xc)=exp[-||x-xc||2/(2*σ)2],其中xc为核函数中心,σ为函数的宽度参数。
㈨ 底层算法和核心算法有什么区别
这两个词的比较完全是文字游戏。
什么是底层?这是相对的啊。从应用层、操作系统、驱动的角度来讲,我们可以说驱动层相对底层。从业务逻辑实现、基本方法实现、基础架构库的角度来讲,我们可以认为基础架构库中的算法更底层。所以这个词完全是个相对概念。没有最底层,只有更底层。
什么是核心?一般来讲指的是一个系统最为重要的一个算法吧。
㈩ 核心算法是什么它对机器人有多重要
核心算法是什么?机器人的算法大方向可以分为感知算法与控制算法,感知算法一般是环境感知、路径规划,而控制算法一般分为决策算法、运动控制算法。环境感知算法获取环境各种数据,通常指以机器人的视觉所见的图像识别等 。
核心算法对机器人的重要性虽然对于工业机器人来说,要想实现高速下稳定精确的运动轨迹,精密的配件必不可少,如电机,伺服系统,还有非常重要的减速机等等。但是这些都只是硬件的需求,仅仅只有好的硬件,没有相应的核心算法,也就是缺少了控制硬件的大脑,那么工业机器人使用再好的硬件,也只能完成一些精确度要求不高的简单工作,而且还容易出问题。而这就是中国机器人制造商面临的最大问题。
作为工业级产品,衡量机器人优劣主要有两个标准:稳定性和精确性。核心控制器是影响稳定性的关键部件,有着工业机器人“大脑”之称。而软件相当于语言,把“大脑”的想法传递出去。 要讲好这门“语言”,就需要底层核心算法。
好的算法,几千行就能让机器人稳定运行不出故障;差的算法,几万行也达不到人家的水准。不掌握核心算法,生产精度需求不高的产品还勉强可以,但倘若应用到航天航空、军工等高端领域,就只能依赖进口工业机器人了。
对于机器人来说,每一个动作都需要核心控制器、伺服驱动器和伺服电机协同动作,而现在的机器人通常拥用多个服务器,因此多台伺服系统更需要核心算法提前进行计算。只有通过底层算法,国外核心控制器才可以通过伺服系统的电流环直接操作电机,实现高动态多轴非线性条件下的精密控制,同时还能满足极短响应延时的需求。这也是为何如今在中国的机器人市场上,6轴以上的高端机器人几乎被国外的机器人公司垄断。