当前位置:首页 » 操作系统 » 时间算法复杂度

时间算法复杂度

发布时间: 2022-02-26 07:16:26

算法的时间复杂度是指什么具体点

算法复杂度不是简单的时间的度量
是用来评价算法优劣程度的依据
比如,一个程序要扫描100 * n * n + 10000 * n + 99999遍,那么时间复杂度是O(n^2)
也就是说,时间复杂度只取次数最高的项,并且忽略系数

所以,时间复杂度是用来描述随着 n 的增大,算法耗时“增大”的!不是用来描述运行所花时间的(这个我们初中老师给我们强调了半天)

还有一点,O(9999999999)(实际应写为O(1),这里只是表达意思)和O(n)的算法那个好?
答案是O(9999999999),因为他的耗时不随n的增大而变化,所以他更优
一般来说,算法的好坏是这样的 (>表示好于) O(1) > O(logn) > O(n) > O(n logn) > O(n^2) > O(n^3) > O(2^n) > O(n!)

❷ 时间复杂度怎么计算

1. 一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))
分析:随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
2. 在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))
例:算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n的平方 次
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n的三次方 次
}
}
则有 T(n)= n的平方+n的三次方,根据上面括号里的同数量级,我们可以确定 n的三次方 为T(n)的同数量级
则有f(n)= n的三次方,然后根据T(n)/f(n)求极限可得到常数c
则该算法的 时间复杂度:T(n)=O(n的三次方)

❸ 时间复杂度计算

简单理解,时间复杂度就是执行语句被调用了多少次。 (1)如果只调用了一次,如: x=5; if(x<-4) {x=x+4;} else {x=x+3;} 在大括号中的内容,只会调用一个语句,那么O(n)=1; (2)如果调用了两次,如: x=5; if(x<-4) {x=x+4;} else {x=x+3;} x=x+56; 在大括号中的内容,只会调用一个语句,但是在最后,还有一个计算公式要调用语句;总共加起来就是调用2次。那么O(n)=2; (3)用1个FOR循环调用 for(x=0;x

❹ A*算法的时间复杂度是多少

从数学上定义,给定算法A,如果存在函数F(n),当n=k时,F(k)表示算法A在输入规模为k的情况下的运行时间,则称F(n)为算法A的时间复杂度。这里首先要明确输入规模的概念。关于输入规模,不是很好下定义,非严格的讲,输入规模是指算法A所接受输入的自然独立体的大小。例如,对于排序算法来说,输入规模一般就是待排序元素的个数,而对于求两个同型方阵乘积的算法,输入规模可以看作是单个方阵的维数。为了简单起见,总是假设算法的输入规模是用大于零的整数表示的,即n=1,2,3,……,k,…… 对于同一个算法,每次执行的时间不仅取决于输入规模,还取决于输入的特性和具体的硬件环境在某次执行时的状态。所以想要得到一个统一精确的F(n)是不可能的。为了解决这个问题,做以下两个说明: 1.忽略硬件及环境因素,假设每次执行时硬件条件和环境条件是完全一致的。 2.对于输入特性的差异,将从数学上进行精确分析并带入函数解析式。

❺ 算法时间复杂度是多少

算法的时间复杂度是一个函数,它定性描述该算法的运行时间。

这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

算法的时间复杂度取决于什么

算法的时间复杂度取决于待处理数据的状态以及问题的规模。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

❻ 什么是算法的时间复杂度

是说明一个程序根据其数据n的规模大小 所使用的大致时间和空间
说白了 就是表示 如果随着n的增长 时间或空间会以什么样的方式进行增长


for(int i = 0; i < n;++i)
;
这个循环执行n次 所以时间复杂度是O(n)

for(int i = 0; i< n;++i)
{
for(int j = 0; j< n;++j)
;
}
这嵌套的两个循环 而且都执行n次
那么它的时间复杂度就是 O(n^2)

时间复杂度只能大概的表示所用的时间
而一些基本步骤 所运行的时间不同 我们无法计算 所以省略


for(int i = 0;i < n;++i)
a = b;

for(int i = 0;i < n;++i)
;
这个运行的时间当然是第二个快 但是他们的时间复杂度都是 O(n)
判断时间复杂度看循环

❼ 如何计算一个算法的时间复杂度

求解算法的时间复杂度的具体步骤是:

1、找出算法中的基本语句:

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

2、计算基本语句的执行次数的数量级:

(1)只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。

(2)这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

3、用大Ο记号表示算法的时间性能:

(1)将基本语句执行次数的数量级放入大Ο记号中。

(2)如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for(i=1;i<=n;i++)x++;for(i=1;i<=n;i++)
for(j=1;j<=n;j++)x++;

(3)第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

❽ 算法时间复杂度指的是什么

时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐进的,亦即考察输入值大小趋近无穷时的情况。

空间复杂性介绍

空间复杂性是指计算所需的存储单元数量。隶属于计算复杂性(计算复杂性由空间复杂性和时间复杂性两部分组成)。算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源量称为时间复杂性,需要空间资源的量成为空间复杂性。

一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。算法的时间复杂度和空间复杂度合称为算法的复杂度。

❾ 算法的时间复杂度

当然应该是O(n^2)

----------------------------------------------------------

算法分析,就是复杂度的问题。

复杂度只算“最要命的”,比如,执行n^2的算法前来个快排根本不拖速度,n^2多的都豁出去了不在乎区区一个nlogn。

书里对复杂度进行了严格的定义,包括O()、o()、Θ()、Ω()四种符号。

简单地说,

O(n^2)就是顶破天了搞个n^2次;

o(n^2)就是天花板不到n^2,比n^2矮一点(比如希尔排序就是o(n^2),因为它再倒霉也达不到n^2);

Ω(n^2)就是说某个算法随便怎么至少都要耗费n^2,比如所有基于比较的排序都是Ω(nlogn);

Θ(n^2)就是说它即是O(n^2)又是Ω(n^2),被天花板和水泥地夹在中间了,动不了了,就是它了。

❿ 算法的时间复杂度

时间复杂度的表示: O(执行次数)

一个有序的元素列表查找某个元素可以用二分查找,每次取中间元素进行比较大小,直到相等。因为每次不符合时总会排除一半的元素 ,所以查找的次数为log2n,那么时间复杂度为O(log2n)。如果是一个无序的元素列表,查找从位置0开始,那么简单查找的次数为n,那么时间复杂度为O(n)。

除此之外快速排序为O(n*log2n),选择排序为O(n*n)。

旅行算法就是n个旅行地点,你可从某个地方出发到余下某下一个地点,走完所有地点。从最开始时走有n个地点可以选择,接下来再走就有n-1个地点可以选择,这样直到只有一个地点可以选择。那么所有你可走的路径就是一个阶乘,选择复杂度为O( n!)。

关于数组和链表的操作。先说数组,因为你有了元素的索引,可以随机访问,你就能快速找到这个元素,而且所有元素的读取都是一样的步骤,所以读取时间复杂度为O(1),数组的插入和删除的时间复杂度为O(n),因为要移动元素。链表的特性是每个都存储了下一个元素的地址,只能顺序访问。那么读取插入删除的时间复杂度分别是O(n)、O(1)、O(1)。

热点内容
安卓上哪里下大型游戏 发布:2024-12-23 15:10:58 浏览:189
明日之后目前适用于什么配置 发布:2024-12-23 14:56:09 浏览:53
php全角半角 发布:2024-12-23 14:55:17 浏览:828
手机上传助手 发布:2024-12-23 14:55:14 浏览:732
什么样的主机配置吃鸡开全效 发布:2024-12-23 14:55:13 浏览:830
安卓我的世界114版本有什么 发布:2024-12-23 14:42:17 浏览:710
vbox源码 发布:2024-12-23 14:41:32 浏览:277
诗经是怎么存储 发布:2024-12-23 14:41:29 浏览:659
屏蔽视频广告脚本 发布:2024-12-23 14:41:24 浏览:419
php解析pdf 发布:2024-12-23 14:40:01 浏览:818