当前位置:首页 » 操作系统 » 位爬山算法

位爬山算法

发布时间: 2025-04-13 12:00:40

Ⅰ 爬山算法(Hill Climbing)解决旅行商问题(TSP)

旅行商问题 TSP(Travelling Salesman Problem)是数学领域中着名问题之一。

TSP问题被证明是 NP完全问题 ,这类问题不者宽腔能用精确算法实现,而需要使用相似算法。

TSP问题分为两类: 对称TSP (Symmetric TSP)以及 非对称TSP (Asymmetric TSP)

本文解决的是对称TSP
假设:A表示城市A,B表示城市B,D(A->B)为城市A到城市B的距离,同理D(B->A)为城市B到城市A的距离
对称TSP中,D(A->B) = D(B->A),城巧升市间形成无向图
非对称TSP中,D(A->B) ≠ D(B->A),城市间形成有向图

现实生活中,可能出现单行线、交通事故、机票往返价格不同等情况,均可以打破对称性。

爬山算法是一种局部择优的方法,采用启发式方法。直观的解释如下图:

爬山算法,顾名思义就是 爬山 ,找到第一个山峰的时候就停止,作为算法的输出结果。所以,爬首衫山算法容易把局部最优解A作为算法的输出,而我们的目的是找到全局最优解B。

如下图所示,尽管在这个图中的许多局部极大值,仍然可以使用 模拟退火算法(Simulated Annealing) 发现全局最大值。

必要解释详见注释

此处根据经纬度计算城市间距离的公式,请参考 Calculate distance between two latitude-longitude points? (Haversine formula)

此处初始化数据源可以使用 TSPLIB 中所提供的数据,此程序大致阐述爬山算法的实现。

编写于一个失眠夜

菜鸟一枚,欢迎评论区相互交流,加速你我成长•ᴗ•。

Ⅱ 为什么先天遗传比后天环境更重要总结

它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型: 式中为决策变量,为目标函数式,式2-2、2-3为约束条件,U是基本空间,R是U的子集。满足约束条件的解X称为可行解,集合R表示所有满足约束条件的解所组成的集合,称为可行解集合。 遗传算法的基本运算过程如下: a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。 b)个体评价:计算群体P(t)中各个个体的适应度。 c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。 d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算子。 e)变异运算:将变异算子作用于群体。即是对群体中的个体串的某些基因座上的基因值作变动。 群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。 f)终止条件判断:若tT,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。 遗传是不可逆转的,而后天是可以改变的。所以说遗传比后天更重要。 进入90年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显着提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。遗传算法的应用研究已从初期的组合优化求解扩展到了许多更新、更工程化的应用方面。 随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习,这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其它智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用,五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的只能计算方法,即同遗传算法具有相同之处,也有各自的特点。目前,这三者之间的比较研究和彼此结合的探讨正形成热点。 1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了TSP问题中,通过实验对其进行了验证。 D.H.Ackley等提出了随即迭代遗传爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)采用了一种复杂的概率选举机制,此机制中由m个“投票者”来共同决定新个体的值(m表示群体的大小)。实验结果表明,SIGH与单点交叉、均匀交叉的神经遗传算法相比,所测试的六个函数中有四个表现出更好的性能,而且总体来讲,SIGH比现存的许多算法在求解速度方面更有竞争力。 H.Bersini和G.Seront将遗传算法与单一方法(simplex method)结合起来,形成了一种叫单一操作的多亲交叉算子(simplex crossover),该算子在根据两个母体以及一个额外的个体产生新个体,事实上他的交叉结果与对三个个体用选举交叉产生的结果一致。同时,文献还将三者交叉算子与点交叉、均匀交叉做了比较,结果表明,三者交叉算子比其余两个有更好的性能。 国内也有不少的专家和学者对遗传算法的交叉算子进行改进。2002年,戴晓明等应用多种群遗传并行进化的思想,对不同种群基于不同的遗传策略,如变异概率,不同的变异算子等来搜索变量空间,并利用种群间迁移算子来进行遗传信息交流,以解决经典遗传算法的收敛到局部最优值问题 2004年,赵宏立等针对简单遗传算法在较大规模组合优化问题上搜索效率不高的现象,提出了一种用基因块编码的并行遗传算法(Building-block Coded Parallel GA,BCPGA)。该方法以粗粒度并行遗传算法为基本框架,在染色体群体中识别出可能的基因块,然后用基因块作为新的基因单位对染色体重新编码,产生长度较短的染色体,在用重新编码的染色体群体作为下一轮以相同方式演化的初始群体。

Ⅲ 什么是爬山算法

我在网络上找的!~~
简介
爬山算法是一种局部择优的方法,采用启发式方法,是对深度优先搜索的一种改进,它利用反馈信息帮助生成解的决策。 属于人工智能算法的一种。

算法:
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node
current <- MAKE-NODE(INITIAL-STATE[problem])
loop do
neighbor <- a highest-valued successor of current
if VALUE[neighbor]<= VALUE[current] then return STATE[current]
current <- neighbor

算法解释:
从当前的节点开始,和周围的邻居节点的值进行比较。 如果当前节点是最大的,那么返回当前节点,作为最大值(既山峰最高点);反之就用最高的邻居节点来,替换当前节点,从而实现向山峰的高处攀爬的目的。如此循环直到达到最高点。

算法优缺点
优点
避免遍历,通过启发选择部分节点,从而达到提高效率的目的。

缺点
因为不是全面搜索,所以结果可能不是最佳。

爬山算法一般存在以下问题:
1)、局部最大:某个节点比周围任何一个邻居都高,但是它却不是整个问题的最高点。
2)、高地:也称为平顶,搜索一旦到达高地,就无法确定搜索最佳方向,会产生随机走动,使得搜索效率降低。
3)、山脊:搜索可能会在山脊的两面来回震荡,前进步伐很小。

其他相关算法
stochastic hill climbing
First-choice hill climbing
Ramdom-restart hill climbing
Simulated annealing search
Local beam search

如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请 编辑词条

Ⅳ 爬山算法

爬山算法是一种局部择优的方法岩嫌罩,是一种局部贪心的最优算法。
采用启发式方法,是对深度优先搜索的一种改进,它利用反馈信息帮助生成解的决策。 该算法每次从当前解的临近解空间中选择一个最优解作为当前解,
直到达到一个局部最优解,属于人工智能算法的一种。

实现简单,其主要缺点是会陷入局部最优者银解,不一定能搜索到全局最优解。
如下图所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,
因为在A点无论向那个方向小幅度移动都不能得到更优的解。

如果想进一步了解爬山算法及其应用粗闹,请参考:
基于爬山算法求解TSP问题(JAVA实现)
机器学习优化算法之爬山算法小结

Ⅳ 爬山算法

《混乱》

这本书提到了一个非常有效的算法,

叫爬山算法。

什么叫爬山算法?

(注:爬山算法是人工智能算法的一种,

其原理是把你随机地抛在地球上的一个点,抛在那个点以后,

你就近在最近的几公里之内寻找最高点,然后找到最高点之后,

立刻站到这个最高点上去,再在最近的几公里之内寻找最高点。)

用计算机模拟我们的人生,

我们的人生就是那个屏幕上,

现在屏幕中所有的坐标、高度都未知,

然后看看谁能用最快的方法找到这个屏幕上的最高点。

用什么样的方法找到最高点?

全球大量的计算机编程高手开始设计这套逻辑,

有的人沿着边走,有的人直接到中心,有人用交叉、画五角星法……

各种各样的方法,到最后发现,

最优秀、最快能够找到最高点的算法只有一个,

这个算法被称作爬山算法。

它的方法是什么?

就是在整个屏幕上随机一抛,

让这个点落在任何一个地方,然后在能力范围之内搜索,

在能力范围之内尽量找到周围最高的高度,找到最高的高度以后,

以这个最高的高度为圆心再找周围最高的高度,然后依次循环(

找最高点周围的下一个最高点),尽可能地找到最高的高点。

如果你今天特别倒霉,掉到一片沙漠中间,

这个沙漠周围的高度都差不多,没有特别高的高度,那该怎么办?

这时候需要重启,告租拿起来随机的一抛,

重启到另外一个地方再找另外的高度。

爬山算法里面有两个核心的点:

第一个点,

是你要接受随机的一抛,

你要接受有不确定性的发生;

第二个点,

是无论命运把你抛到什么地方,

你都要努力地展开搜索,

尽胡闷可能地做到最好,尽可能地找到最高的高点。

这就是爬山算法的精髓。

使用爬山算法探裤友弯索一片屏幕,到最后发现这种方法是最快的。

就是要学会拥抱不确定性。

人生所有的烦恼、痛苦,

都是来自于我们对不确定性的抗拒。

我们希望我们的孩子按照一个模式成长,

我们希望我们的工作按照一个模式发展,

我们希望我们创业做的公司,

能够按照一个节奏安全一个模式发展,

是这些抗拒给我们带来大量的烦恼。

但是实际上你唯一需要做的事,是拥抱不确定性。

当不确定性发生、命运将你随机一抛的时候,

你能够随时随地、立刻展开最好的努力,

而不是待在原地拼命地抱怨,

拼命地对标,拼命地去维权,

反而这些东西浪费了我们太多的时间。

作者  | 樊登

来源  | 笔记侠(ID:Notesman)

热点内容
浪潮存储厚积薄发图片 发布:2025-04-13 22:37:54 浏览:492
sql新建作业 发布:2025-04-13 20:04:15 浏览:767
wp磁贴文件夹 发布:2025-04-13 19:49:06 浏览:495
桃子神社解压码 发布:2025-04-13 19:48:59 浏览:854
ubuntu配置nginxphp 发布:2025-04-13 19:30:02 浏览:822
小米解压乱码 发布:2025-04-13 19:04:57 浏览:769
sql2008技术内幕 发布:2025-04-13 19:04:52 浏览:500
python中单引号和双引号 发布:2025-04-13 18:29:57 浏览:63
屏密码怎么取消 发布:2025-04-13 18:29:56 浏览:363
nc服务器是什么 发布:2025-04-13 18:14:55 浏览:109