灰度世界算法
㈠ HDV 和HVD分别是什么,详细一点,包括他们的公司都解释一下,谢谢了!
[转贴]解析DVD、HDV、EVD、HVD的编码技术
一、国际音频编码技术现状和发展趋势
目前,国际运动图像专家组(MPEG)已经推出了几种音频编码技术。其中MPEG-1(ISO/IEC11172-3)按照编码复杂度分三层编码机制,支持采样率为32、44.1和48KHz的单声道(mono)及双声道(stereo或Dual mono)编码。第3层(MP3)在对双声道立体声编码时,在128Kbit/s对绝大多数音乐编码可达到接近CD的音质效果,成为网络音乐和便携电子设备的首选标准。MPEG-2BC(ISO/IEC13818-3)则是对MPEG-1的向后兼容多声道扩展方案,并增加了一个“低频效果”声道从而提升至5.1个声道编码,且支持16、22.5和24KHz采样音频信号编码。标志MPEG的最高技术水平的MPEG-2 Advanced Audio Coding (ISO/IEC13818-7AAC)在采样率为8~96KHz下提供了1~48个声道可选范围的高质量音频编码。它适用于从比特率在8kbit/s单声道的电话音质到160kbit/s多声道高质量音频编码。用AAC对单声道音频编码,在64Kbit/s下对绝大多数音乐编码可达到接近CD的音质效果。因此和MP3的单声道96Kbit/s相比,编码效率已经有了很大提高,被认为是下一代音频编码标准。
在多声道环绕立体声编码方面,美国杜比实验室的AC-3提供对32、44.1和48KHz采样,从单声道到5.1环绕立体声的音频信号的编码,并支持码率范围从32kbit/s的单声道码流到640kbit/s的多声道高质量音频码流。目前,DolbyAC-3已经凭借其良好的声场和声像重现能力,赢得了电影、家庭影院、DVD和数字电视伴音等领域的广泛应用,成为事实上的国际标准。
其他优秀的音频编码技术,如索尼的ATARC、贝尔实验室的PAC和微软的WMA等,都获得了相当广泛的应用。
目前,从国际数字音频应用的发展来看,数字音频编码技术已经在互联网、广播、个人消费电子产品和数字影视等领域获得了广泛的应用,随着3G技术的兴起,正在进入移动通信领域。因此,新一代的数字音频编码技术在传输的可靠性、对带宽的要求和版权的安全性等方面的要求更高。
中国在数字音频编码领域起步较晚,目前已经开展数字音频编码技术研究的大学有清华大学、天津大学、西安电子科技大学、哈尔滨工业大学、华南理工大学、东南大学和北京邮电大学等,还没获得较成熟和完整的成果。
二、图像视频编码的国际标准及技术特点
近10年来,图像编码技术得到了迅速发展和广泛应用,关且日臻成熟,其标志就是几个关于图像编码的国际标准的制定,即国际标准化组织ISO和国际电工委员会IEC关于静止图像的编码标准JPEG、国际电信联盟ITU-T关于电视电话/会议电视的视频编码标准H261,H.263和ISO/IEC关于活动图像的编码标准MPEG-1,MPEG-2和MPEG-4等。这些标准图像编码算法融合了各种性能优良的图像编码方法,代表了目前图像编码的发展水平。
1、JPEG(Joint Photographic Expert Group)
JPEG是ISO/IEC联合图像专家组制定的静止图像压缩标准,是适用于连续色调(包括灰度和彩色)静止图像压缩算法的国际标准。JPEC算法共有4种运行模式,其中一种是基于空间预测(DPCM)的无损压缩算法,另外3种是基于DCT的有损压缩算法。
1)无损压缩算法,可以保证无失真地重建原始图像。
2)基于DCT的顺序模式,按从上到下,从左到右的顺序对图像进行编码,称为基本系统。
3)基于DCT的递进模式,指对一幅图像按由粗到细对图像进行编码。
4)分层模式。以各种分辨率对图像进行编码,可以根据不同的要求,获得不同分辨率的图像。
JEPG对图像的压缩有很大的伸缩性,图像质量与比特率的关系如下:
a)1.5~2.0比特/像素:与原始图像基本没有区别(transparent quality)。
b)0.75~1.5比特/像素:极好(excellent quality),满足大多数应用。
c)0.5~0.75比特/像素:好至很好(good to very good quality),满足多数应用。
d)0.25~0.5比特/像素:中至好(moderate to very good quality),满足某些应用。
2、JPEG-2000
与以往的JPEG标准相比,JPEG-2000压缩率比JPEG高约30%,它有许多原先的标准所不可比拟的优点。JPEG-2000与传统JPEG最大的不同,在于它放弃了JPEG所采用的以DCT变换为主的分块编码方式,而改为以小波变换为主的多分辨率编码方式。
首先,JPEG-2000能实现无损压缩(lossless compression)。在实际应用中,有一些重要的图像,如卫星遥感图像、医学图像、文物照片等,通常需要进行无损压缩。对图像进行无损编码的经典方法——预测法已经发展成熟,并作为一个标准写入了JPEG-2000中。
JPEG-2000还有一个很好的优点就是误码鲁棒性(robustness to bi terror)好。因此使用JPEG-2000的系统稳定性好,运行平稳,抗干扰性好,易于操作。
JPEG-2000能实现渐进运输(progressive trans mission),这是JPEG-2000的一个极其重要的特征。它可以先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,以满足用户的需要,这在网络传输中具有非常重大的意义。使用JPEG-2000下载一个图片,用户可先看到这个图片的轮廓或缩影,然后再决定是否下载。而且,下载时可以根据用户需要和带宽来决定下载图像质量的好坏,从而控制数据量的大小。
JPEG-2000另一个极其重要的优点就是感兴趣区(ROI,Region Of Interest)特性。用户在处理的图像中可以指定感兴趣区,对这些区域进行压缩时可以指定特定的压缩质量,或在恢复时指定特定的解压缩要求,这给人们带来了极大的方便。在有些情况下,图像中只有一小块区域对用户是有用的,对这些区域采用高压缩比。在保证不丢失重要信息的同时,又能有效地压缩数据量,这就是感兴趣区的编码方案所采取的压缩策略。基于感兴趣区压缩方法的优点,在于它结合了接收方对压缩的主观要求,实现了交互式压缩。
3、MPEG-1
国际标准化组织ISO/IEC的运动图像专家组MPEG(Moving Picture Expert Group)一直致力于运动图像及其伴音编码标准化工作,并制定了一系列关于一般活动图像的国际标准。1993年制定的MPEG-1标准是针对1.5Mbit/s速率的数字存储媒体运动图像及其伴音编码制定的国际标准,该标准的制定使得基于CD-ROM的数字视频以及MP3等产品成为可能。MPEG-1的带宽最多为1.5Mbit/s,其中11Mbit/s用于视频,128Kbit/s用于音频,其余带宽用于MPEG系统本身。
为了追求高的压缩效率,去除图像序列的时间冗余度,同时满足多媒体等应用所必须的随机存取要求,MPEG-1视频把图像编码分成I帧、P帧、B帧和D帧共4种类型。I帧为帧内编码帧(intra coded frame),编码时采用类似JPEG的帧内DCT编码,I帧的压缩率是几种编码类型中最低的。P帧为预测编码帧(predictive coded frame),采用前向运动补偿预测和误差的DCT编码,由其前面的I或P帧进行预测。B帧为双向预测编码帧(bi-directionally predictive coded frame),采用双向运动补偿预测和误差的DCT编码,由前面和后面的I或P帧进行预测,所以B帧的压缩效率最高。D帧为直流编码帧(Dc coded frame),只包含每个块的直流分量。MPEG-1采用运动补偿支除图像序列时间轴上的冗余度,可使对P帧和B帧图像的压缩倍数比I帧提高很多。
4、MPEG-2
MPEG组织1995年推出的MPEG-2标准是在MPEG-1标准基础上的进一步扩展和改进,主要是针对数字视频广播、高清晰度电视和数字视盘等制定的4~9Mbit/s运动图像及其伴音的编码标准,MPEG-2是数字电视机顶盒与DVD等产品的基础。MPEG-2系统要求必须与MPEG-l系统向下兼容,因此其语法的最大特点在于兼容性好并可扩展。MPEG-2的目标与MPEG-1相同,仍然是提高压缩比,改善音频、视频质量,采用的核心技术还是分块DCT和帧间运动补偿预测技术。MPEG-2视频允许数据速率高达100Mbit/s,支持隔行扫描视频格式和许多高级性能。考虑到视频信号隔行扫描的特点,MPEG-2专门设置了“按帧编码”和“按场编码”两种模式,并相应地对运动补偿和DCT方法进行了扩展,从而显着提高了压缩编码的效率。考虑到标准的通用性,增大了重要的参数值,允许有更大的画面格式、比特率和运动矢量长度。除此之外,MPEG-2视频压缩编码还进行了以下扩展:
1)输入/输出图像彩色分量之比可以是4∶2∶0,4∶2∶2,4∶4∶4。
2)输入/输出图像格式不限定。
3)可以直接对隔行扫描视频信号进行处理。
4)在空间分辨率、时间分辨率、信噪比方面的可分级性适合于不同用途的解码图像要求,并可给出传输上不同等级的优先级。
5)码流结构的可分级性,比如头部信息、运动矢量等部分可以给予较高的优先级,而对于DCT系数的高频分量部分则给予较低的优先级。
6)输出码率可以是恒定的也可以是变化的,以适应同步和异步传输。
MPEG-2视频是一系列的系统,每一个系统具有安排好的共性和兼容程度。它允许对四种源格式或者级别进行编码,从简单清晰度(CIF格式)到完全的高清晰度电视HDTV(High Definition Television)。除了源格式的这种灵活性外,MPEG-2还规定了分辨率从低到高的4级5类共11种单独的技术规范,同一种类不同级别间的图像分辨率和编码速率相差甚远。表2给出了MPEG-2允许的级别和类的组合。
5、MPEG-3
MPEG-3是ISO/IEC最初为HDTV开发的编码和压缩标准,它要求传输速率在20Mbits/sev-40Mbits/sec间,但这将使画面有轻度扭曲。不过由于MPEG-2的出色性能表现,已能适用于HDTV,使得原打算为HDTV设计的MPEG-3,还没出世就被扼杀在摇篮中了。
6、MPEG-4
1992年11月,MPEG专家组决定开发新的适应于极低码率的音频/视频(AV,Audio-Visual)编码的国际标准,即MPEG-4。对于学术界来说,极低码率(即小于64Kbit/s)是视频编码标准的最后一个比特率范围。
MPEG-4专家组深入分析了AV领域中电视(television)、计算机(computer)、通信(communication)以及其交叉融合的发展趋势后,认为MPEG-4应该提供用于通信的新方式,其核心是基于内容content-based)的AV信息存储、处理与操作,支持交互性、高压缩比以及通用存储性等功能。同时在其结构上应具有适应性与可扩展性,以适应硬、软件技术的不断发展,便于及时融合新的技术。
相对于MPEG的前两个压缩标准,MPEG-4已不再是一个单纯的视频音频编解码标准,它将内容与交互性作为核心,从而为多媒体提供了一个更为广阔的平台。它更多定义的是一种格式和框架,而不是具体的算法,这样人们可以在系统中加入许多新的算法。除了一些压缩工具和算法外,各种各样的多媒体技术如图像分析与合成、计算机视觉、语音合成等也可以充分应用于编码中。
H.261是ITU-T针对可视电话和会议电视、窄带ISDN等要求实时编解码和低延时应用提出的一个编码标准。该标准包含的比特率为p*64Kbit/s,其中p是一个整数,取值范围为1~30,对应比特率为64Kbit/s~92Mbit/s。
7、H.261
H.261标准大体上分为两种编码模式:帧内模式和帧间模式。对于缓和运动的人头肩像,帧间编码模式将占主导位置;而对画面切换频繁或运动剧烈的序列图像,则帧间编码模式要频繁地向帧内编码模式切换。
为了减少信道误码,采用一种叫做BCH(511,493)的纠错编码方式。这种纠错码可以在493比特中自动纠正2比特的错误。按H261规定,源编码器必须具备纠错编码的功能,而纠错编码是选用的。
8、H.263
1995年,ITU-T总结当时国际上视频图像编码的最新进展,针对低比特率视频应用制定了H.263标准,该标准被公认为是以像素为基础的采用第一代编码技术的混合编码方案所能达到的最佳结果。随后几年中,ITU-T又对其进行了多次补充,以提高编码效率,增强编码功能。补充修订的版本有1998年的H.263+,2000年的H263++。H.263系列标准特别适合于PSTN网络、无线网络与因特网等环境下的视频传输。
H.263已被几种可视电话采纳为终端标准,如支持PSTN与无线网的H.324,支持N-ISDN的H.320,支持B-ISDN的H.310等。H.263信源编码算法的核心仍然是H.261标准中采用的DPCM/DCT混和编码算法,原理框图也和H.261十分相似。
9、MPEG-7与MPEG-21
MPEG-7是为“多媒体内容描述接口”,是用于信息表示的,MPEG-7是“基于语义的表示”。MPEG-7定义了一个描述符标准集,用于描述各种类型的多媒体信息,与之相应的描述方案可以用于规范多媒体描述符的生成和不同描述符之间的有机联系。
这些描述符与指定的多媒体对象的内容紧密联系,采用提取对象特征的方法为实现基于内容和语义的准确检索提供接口。在此基础上,MPEG-7定义了一种描述定义语言(DDL,Description Definition Language)用于指定和生成描述方案,即希望提出新的视频、音频信息表示方式,它既不同于基于波形和基于压缩的表示方式(如MPEG-1和MPEG-2),又不同于基于对象的表示方式(MPEG-4)。这一表示方式允许对信息的含义进行一定程度的解释,它可以被一个设备或计算机解码器存取。MPEG-7的目的在于提供一个标准化的核心技,以便描述多媒环境下的视频和音频内容,最终使视频和音频搜集像文本搜集一样简单方便。
MPEG-7可以描述的多媒体对象范围极其广泛,其核心部分DDL语言将充分吸收现有的各种媒体描述语言的特点,以达到对多媒体数据的普遍适应性。MPEG-4中提出的基于对象编码的思想将成为对多媒体数据库中的视频、音频对象进行处理(包括特征提取、压缩编码等)的基本手段。而MPEG-7的多媒体内容描述功能对MPEG-1,MPEG-2,MPEG-4起到性能提高和功能扩展的作用。
最后,MPEG-7将提供内容的描述而不是内容本身,它将不能替代已有的MPEG标准(MPEG-1,MPEG-2,MPEG-4),仅仅是已有3个标准的补充。
正在研制的新标准MPEG-21是一个支持通过异构网络和设备,使用户透明方便地使用多媒体资源的标准,其目的是建立一个交互的多媒体对象,实现多种业务模型,包括对版权和交易的自动管理,对内容使用者隐私的尊重等。
三、国内现有碟机的使用的技术
1、DVD技术
据调查,不少DVD影碟机不能实现真正的AC-3解码功能,而分别采用以下一些方式来代替:
1)、简单的两声道。不管盘片上音频数据是否按照AC-3进行编码,均以两路混合音频输出。由于省略了其余四个声道的音频输出,在硬件成本上大大降低,且向Dobly公司外纳交专利费用比真杜比AC-3解码大为减少,是DVD影碟机的低价位方案。在这种方式下,用户仅仅只能听到简单的左右两路声道效果。如果要欣赏真正的杜比AC-35.1声道环绕声效果,还需外接一台带同轴或光纤输入端子且具有AC-3解码功放,其市场价格约2000元,即另购一台DVD影碟机的价格。
2)、有六路输出端子的两声道。这种方式又称“假六声道”,它实际上只有3组相同的两声道输出,是双声道机的简单复制,根本无法实现真正的杜比AC-35.1声道的机器类似,往往容易成炒正当利益的来源。因此,消费者在选购时应仔细加以甄别。
3)、虚拟仿真AC-3声道。该方式通过一颗声场处理芯片将两声道音频经过叠加、相消等软件算法模拟出一种类似于AC-35.1声道解码输出呢?杜比AC-35.1声道的效果,但由于其音源全部来自于两路主声道,声场的表现力、层次感较真正AC-3解码都要逊色得多,且极易混淆视听,侵害消费者利益。
那么,什么是真正杜比AC-35.1声道解码输出呢?杜比AC-3是一种专门为多声道数字式音响设计的感性编码技术,它将音质学和先进的数字信号处理技术结合在一起,具有前所未有的高效率、高质量和多面性。按多声道的形式,杜比AC-3提供了五个全音频声道,其排列方法通常称为3/2结构:三个前排声道(左、中、右)加上两个环绕声道,还有一个低音频效应的声道。通俗地说,就是前置左、前置右、中置、环绕左、环绕右及重低音,也就是所谓“5.1”声道。相对于模拟式的AC-2(杜比Prologic),杜比AC-3具有两个完全独立的环绕声道,每一声道都能提供于前排三个声道完全相同的全频带保真音响。因而真实再现上述效应的解码就是真正意义的杜比AC-35.1声道解码。
2、HDV技术
HD12压缩编码系统是北京凯诚高清技术有限公司开发的针对HDV高清数字电影格式激光多媒体盘片的压缩编码系统。该系统采用优化的MPEG2视频编码格式,在原来MPEG2的基础上,采用重新定义宏块大小、重新设定量化长度、优化熵编码和优化运动补偿的方式,利用目前在半导体领域中取得的最新进展,凭借半导体芯片的强大处理能力,实现了更高的压缩比和更好的还原效果。
HD12压缩编码系统依托北京凯诚高清技术有限公司技术人员多年的技术积累,历时2年多的时间才开发完成。该系统不仅具有高效的实时压缩功能,而且还能够完成图像的清晰化处理和修补,字幕和配音的生成叠加等其他各种编辑功能。
利用凯诚高清技术有限公司开发的HD12压缩编码系统能够实现对高清视频流的高效压缩,对于目前高清视频节目匮乏的现状提供了一个很好的技术平台,能够充分满足目前高清视频节目的压缩需求,从而可以让广大消费者能够欣赏到更多更好的高清视频节目。
HDV播放机可以兼容CD、VCD、DVD等光盘,但是HDV光盘在普通的VCD、DVD等影碟机上看不了。也就是说,HDV光盘只能与HDV高清数字电影播放机相匹配,如果没有机器,买回的光盘只能等于是一张废碟。
据凯诚高清技术有限公司开发人员说:“因为HDV盘片使用的是超强压缩技术,可以在一张盘上存放3-5部高画质的电影节目,这种技术目前在国内只有他们的生产厂商掌握,而且技术都设有加密,外人根本无法窃取。”
3、EVD技术
阜国的音频压缩技术始于公司成立之初(2000年3月),并作为“新一代高密度数字激光视盘系统EVD®”项目中的子课题,经过了起步、发展和成熟几个阶段,目前已经申请了近二十项核心专利技术。这些专利已经形成了一套高效的、自主知识产权的基于多分辨率分析的音频编码技术方案EAC,在2001年7月江苏省电子产品监督检验所组织的主观音质评价实验中获得了与会专家的高度的评价。
目前,EAC编码技术可以提供单声道、双声道立体声、5.1环绕立体声、多采样率和多码率下的编解码方案,编码效率进一步提高,并已经成为EVD®规范的音频编码技术标准。
为了进一步提高编码效率,特别是在极低码率下的音频质量,在自主研发的同时,我们也加强了和国外掌握最先进音频编码技术企业的技术合作。经过长期的技术合作,北京阜国数字技术有限公司将和拥有世界最先进水平带宽扩展技术的瑞典-德国Coding Technologies公司成立合资企业,共同开发并推广EAC Plus技术。EAC Plus技术将在EAC技术基础上,进一步提高中国的音频编码技术水平,使中国音频编码技术达到国际领先水平。
我们知道,音频编码技术分可以从很多角度去分类:有损和无损、波形和参数、窄带和宽带,以及恒定码率和变率等等。但是,音频编码所处理的信号类型可以简单的分成两类:缓变成分和瞬变成分。当然,从模型的角度可分成弦类成分、瞬变成分和噪声成分,由于我们目前集中于波形编码技术研究,故不做如此划分。可以说,所有的波形编码技术都在努力寻求在一种对缓变成分和瞬变成分都有尽可能高的效率的编码技术,同时保证可以接受的编码复杂度。问题的原因在于人耳对不同信号的听觉特性。虽然从理论上讲,人耳对信号的响应是非常复杂的生理和心理问题,但在编码的过程中,突出的体现为两个矛盾。对缓变成分,人耳响应的频率分辨率较高,而时间分辨率较低;对瞬变成分则表现为较低的频率分辨率和较高的时域分辨率;且这种特性随信号的不同而不同。较高的频率分辨率对应着较高的编码效率,但同时有较差的预回声抑制能力;较高的时间分辨率则有较好的预回声抑制能力,但编码效率较低。
EAC在设计和实现的过程中,一直在努力通过一种更自然的处理方式,来处理/编码各种音频信号,这是EAC设计的基本技术路线。并具体表现在EAC一直遵循了多分辨率的分析机制,努力追求在一个统一的滤波框架中更高效的编码各种类型的音频信号。
4、HVD技术
4月28日,国内首个高清晰度视频光盘产业联盟(简称HVD联盟)在上海隆重成立。作为国内新一代高清晰视盘机的重要生产开发商,基于其在高清DVD领域的巨大影响力,清华同方顺利成为该联盟的首批成员单位。
HVD联盟是以具有自主知识产权的IC等核心关键件、自主开发的整机系统及技术为纽带,由整机制造商、内容提供商、出版发行商、核心芯片等厂商以及相关的大学、研究所自愿组成的产业联合体。联盟的奋斗目标是:通过产业链的有效整合,有序、高效、持续地推进HVD技术标准、市场和产业的发展,为我国影碟机行业从“制造大国”迈向“技术强国”做出贡献。
联盟的近期目标是发展、推进具有“高清”水平的利用红光物理格式的HVD整机内容和盘片产业,让HVD成为DVD的升级换代产品。“HVD联盟”首批成员单位有18家,主要任务是:建立、保护“HVD”知识产权机制;联盟内部实行知识产权共享;开展“HVD”标识授权和格式验证工作,保证HVD整机和盘片的统一性;做好盘片的加密和防拷贝工作;组织召开各类技术介绍会、产品推广会、格式标准发布会等
依托着自身强大的科研实力,经过三年多来的不断探索,目前清华同方已经成为国内掌握高清影碟机技术的极少数的几家生产商之一。作为清华同方影碟机产品的最新科技代表,不久前,清华同方已经推出了具有最高科技含量的DVP-i919高清DVD,可实现480P、720P逐行扫描,并可实现1920*1080i隔行扫描。同时作为目前DVD的替代产品,i919还支持MPEG4影片播放,同时设置USB1.1接口,可直接同诸多数码产品进行数据交换和查看。从近期该公司的销售数据看,清华同方高清产品市场反应不俗,目前已与市场上同期推出的EVD、HDV等换代产品并驾齐驱。
此次清华同方成功加入“HVD联盟”,相信这将为其引领高清DVD时代赢得更多先机,并将对今后的高清DVD行业走向产生深远影响。
HVD是英文High-definition Versatile Disc的缩写。HVD集强大的功能、清晰的图像、低廉的价格、优越的向下兼容能力、关键技术、自主知识产权于一身,HVD技术已向国家知识产权局申请6项发明专利。
HVD支持多种输入格式的接口:1080i/720p/576p/576i/480i/VGA/SVGA,符合视频、Y/C、YPbPr.HVD的水平清晰度和垂直清晰度均达到720线的高清标准。
一张DVD9一样容量的大小光盘中,HVD可以存放150分钟的高清晰度电影。
5、FVD技术
目前版本的FVD规格是使用650nm红光雷射;NA0.6~0.65,其物理规格比DVD容量提升;单面单层的FVD盘片容量可达5.4GB~6GB;编码方式第一代初期先用8/16编码,未来第二代则采用效率较高的8/15编码方式及提高纠错(ECC)的能力。在逻辑规格部份,采用微软WindowMediaVideo-9(WMV-9)视频压缩技术可容纳135分钟1280x720p的高画质节目,其中新开发的高画质影音技术如:Menu动态&动态含背景,Program playback, Menu playback, Sub-picture-playback, Master-Slave playback等。此外,为达到保护智能财产的目的,亦将提供Advanced Encryption Standard(AES)Content Protection system防拷机制。
㈡ 怎么通俗地理解张量
对Gradle通俗的理解:
软件开发讲究代码复用,通过复用可以使工程更易维护,代码量更少..... 开发者可以通过继承,组合,函数模块等实现不同程度上的代码复用.但不知你有没有想过,软件开发也是一种工程作业,绝不仅仅是写代码,还涉及到工程的各种管理(依赖,打包,部署,发布,各种渠道的差异管理.....),你每天都在build,clean,签名,打包,发布,有没有想过这种过程,也可以像代码一样被描述出来, 也可以被复用.
㈢ 诺亚方舟的算法具有哪些特性
诺亚方舟的算法具有以下特性:有穷性、持续性和可行性。
㈣ 灰色预测理论的C/C++语言算法实现
之前我想帮你答这个题的,后来想了想,不太可能,四个状态随机出现,在出现十次的前提下,预测第十一次将会出现什么状态,并且精准度要求 99.9%; 如果真有这个算法,估计这个世界已经不是现在这个模样了
㈤ 图像处理、计算机视觉、机器学习与模式识别的联系与区别
摘要 计算机视觉(computer vision),用计算机来模拟人的视觉机理获取和处理信息的能力。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。
㈥ AWB是什么意思
AWB是Automatic white balance的英文缩写,意思是白平衡。
在日光灯的房间里拍摄的影像会显得发绿,在室内钨丝灯光下拍摄出来的景物就会偏黄,而在日光阴影处拍摄到的照片则莫名其妙地偏蓝,其原因就在于“白平衡”的设置上,白平衡的作用就是在这些场景下恢复图像的正常颜色。
(6)灰度世界算法扩展阅读:
自动白平衡
【释义】:Automatic white balance的英文缩写,在日光灯的房间里拍摄的影像会显得发绿,在室内钨丝灯光下拍摄出来的景物就会偏黄,而在日光阴影处拍摄到的照片则莫名其妙地偏蓝,其原因就在于“白平衡”的设置上,白平衡的作用就是在这些场景下恢复图像的正常颜色。
【基本解释】:图像3A算法(AWB、AE、AF)中的一个。
㈦ 图像变换的目的是什么,常用的图像变换算法有哪些
图像变换的目的为了有效和快速地对图像进行处理和分析,需要将原定义在图像空间的图像以某种形式转换到另外的空间,利用空间的特有性质方便地进行一定的加工,最后再转换回图像空间以得到所需的效果。
图像变换是对图像处理算法的总结,它可以分为四个部分:空域变换等维度算法,空域变换变维度算法,值域变换等维度算法和值域变换变维度算法。
其中空域变换主要指图像在几何上的变换,而值域变换主要指图像在像素值上的变换。等维度变换是在相同的维度空间中,而变维度变换是在不同的维度空间中,例如二维到三维,灰度空间到彩色空间。
(7)灰度世界算法扩展阅读:
相关延伸:图像简介
21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理,即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高;
可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。大多数图像处理软件都支持这四种类型的图像。
中国物联网校企联盟认为图像处理将会是物联网产业发展的重要支柱之一,它的具体应用是指纹识别技术。
㈧ 在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
(8)灰度世界算法扩展阅读:
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
㈨ 25%的灰度RGB是多少
25%的灰度RGB(25,25,25)。
灰度就是没有色彩,RGB色彩分量全部相等。如果是一个二值灰度图像,它的像素值只能为0或1,我们说它的灰度级为2。用个例子来说明吧:一个256级灰度的图像,如果RGB三个量相同时,如:RGB(100,100,100)就代表灰度为100,RGB(50,50,50)代表灰度为50。
彩色图像的灰度其实在转化为黑白图像后的像素值(是一种广义的提法),转化的方法看应用的领域而定,一般按加权的方法转换,R, G,B 的比一般为3:6:1。
任何颜色都由红、绿、蓝三基色组成,假如原来某点的颜色为RGB(R,G,B),那么,可以通过下面几种方法,将其转换为灰度:
1、浮点算法:Gray=R*0.3+G*0.59+B*0.11
2、整数方法:Gray=(R*30+G*59+B*11)/100
3、移位方法:Gray =(R*77+G*151+B*28)>>8;
4、平均值法:Gray=(R+G+B)/3;
5、仅取绿色:Gray=G;
通过上述任一种方法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统一用Gray替换,形成新的颜色RGB(Gray,Gray,Gray),用它替换原来的RGB(R,G,B)就是灰度图了。
(9)灰度世界算法扩展阅读
RGB格式:
对一种颜色进行编码的方法统称为“颜色空间”或“色域”。用最简单的话说,世界上任何一种颜色的“颜色空间”都可定义成一个固定的数字或变量。
RGB(红、绿、蓝)只是众多颜色空间的一种。采用这种编码方法,每种颜色都可用三个变量来表示-红色绿色以及蓝色的强度。记录及显示彩色图像时,RGB是最常见的一种方案。
但是,它缺乏与早期黑白显示系统的良好兼容性。因此,许多电子电器厂商普遍采用的做法是,将RGB转换成YUV颜色空间,以维持兼容,再根据需要换回RGB格式,以便在电脑显示器上显示彩色图形。
网页格式:
由于网页(WEB)是基于计算机浏览器开发的媒体,所以颜色以光学颜色RGB(红、绿、蓝)为主。网页颜色是以16进制代码表示,一般格式为#DEFABC (字母范围从A-F,数字从0-9 );
如黑色,在网页代码中便是:#000000(在css编写中可简写为#000)。当颜色代码为#AABB11时,可以简写为#AB1表示,如#135与#113355表示同样的颜色。
RGB1、RGB4、RGB8都是调色板类型的RGB格式,在描述这些媒体类型的格式细节时,通常会在BITMAPINFOHEADER数据结构后面跟着一个调色板(定义一系列颜色)。它们的图像数据并不是真正的颜色值,而是当前像素颜色值在调色板中的索引。
以RGB1(2色位图)为例,比如它的调色板中定义的两种颜色值依次为0x000000(黑色)和0xFFFFFF(白色)…(每个像素用1位表示)表示对应各像素的颜色为:黑黑白白黑白黑白黑白白白。
㈩ 一幅灰度图像,矩阵为512*512,灰度级别为256,在计算机中保存,图像数据占多少字节
2的8次方=256,8个bit位可表示一个像素,8bit=1字节
理论上是512*512=262144(byte)=256(kb)
不同格式的图像压缩算法不一样,所以实际大小也不同
BMP是无损压缩,512*512灰度图实际大小就是256kb
其它格式大小比BMP格式要小,但是会牺牲一些定的图像质量
图像压缩无非就是牺牲图像质量来成全图像大小,或是牺牲图像大小来成全图像质量,鱼与熊掌不可兼得,达到图像品质与图像大小之间的最佳点就成了图像压缩的追求。
当然了,现在的图像算法已经很成熟了,不同的应用采用不同的格式,如果你能开发一个超越现在图像压缩的算法,恭喜你,你将获得诺贝尔奖,以表彰你在图像传输方面的巨大贡献,使世界人民的生活更加丰富多彩。