蚁群算法时间
A. 蚁群算法中转移概率是怎么用的.不同的蚂蚁为什么会选择不同的路径
因为不同路径的信息素和启发信息不同,所以向每条路径转移的概率也不同;
具体实现可以运用轮盘赌选择,转移概率越大的路径就会有更多的蚂蚁选择.。
Prime 算法和 Kruskal 算法都是用来求加权连通简单图中权和最小的支撑树(即最小树)的,Prime算法的时间复杂度为O(n^2) (n 为顶点数),Kruskal 算法的时间复杂度为 O(eln(e)) (e为边数),这两种算法都是多项式时间算法,也就是说,最小树问题已经有了有效算法去求解,属于P问题。
Dijkstra 算法求解的是加权连通简单图中一个顶点到其它每个顶点的具有最小权和的有向路,最简单版本的时间复杂度是O(n^2),也是多项式时间算法。
而蚁群算法是一种近似算法,它不是用来解决已存在精确有效算法的问题的,而是用来解决至今没有找到精确的有效算法的问题的,比如旅行商问题(TSP)。
旅行商问题也可以说是求“最短路径”,但它是求一个完全图的最小哈密顿圈,这个问题至今未找到多项式时间算法,属于NPC问题,也就是说,当问题规模稍大一点,现有的精确算法的运算量就会急剧增加。
文中的某些观点引自知乎大神余幸恩,感谢帮忙!~
B. 如何用蚁群算法来计算固定时间内走更多的城市且路程最短
概念:蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值
其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序
应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内
引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.
C. 蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪些问题!
概念:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值
其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序
应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内
引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点: 1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。 引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。 既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。 其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。
具体参考http://ke..com/view/539346.htm
希望对你有帮助,谢谢。
D. 蚁群算法及其应用实例
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种对自然界蚂蚁的寻径方式进行模拟而得到的一种仿生算法,是一种用来在图中寻找优化路径的机率型算法。
蚂蚁在运动过程中,可以在行走的路径上留下信息素,后来的蚂蚁可以感知到信息素的存在,信息素浓度越高的路径越容易被后来的蚂蚁选择,从而形成一种正反馈现象。
它能够求出从原点出发,经过若干个给定的需求点,最终返回原点的最短路径。这也就是着名的旅行商问题(Traveling Saleman Problem,TSP)。
若蚂蚁从A点出发到D点觅食,它可以随机从ABD或ACD中选择一条路。假设初始时为每条路分配一只蚂蚁,每个时间单位行走一步,则经过8个时间单位后,情形如下图所示:ABD路线的蚂蚁到达D点,ACD路线的蚂蚁到达C点。
那么,再过8个时间单位,很容易可以得到下列情形:ABD路线的蚂蚁回到A点,ACD路线的蚂蚁到达D点。
α 代表信息素量对是否选择当前路径的影响程度,反映了蚁群在路径搜索中随机性因素作用的强度。
α 越大,蚂蚁选择以前走过的路径的可能性越大,搜索的随机性就会减弱。
α 过小,会导致蚁群搜索过早陷入局部最优,取值范围通常为[1,4]。
β 反映了启发式信息在指导蚁群搜索中的相对重要程度,蚁群寻优过程中先验性、确定性因素作用的强度。
β 过大,虽然收敛速度加快,但是易陷入局部最优。
β 过小,蚁群易陷入纯粹的随机搜索,很难找到最优解。通常取[0,5]。
ρ 反映了信息素的蒸发程度,相反,1-ρ 表示信息素的保留水平
ρ 过大,信息素会发过快,容易导致最优路径被排除。
ρ 过小,各路径上信息素含量差别过小,以前搜索过的路径被在此选择的可能性过大,会影响算法的随机性和全局搜索能力。通常取[0.2,0.5]。
m过大,每条路径上信息素趋于平均,正反馈作用减弱,从而导致收敛速度减慢。
m过小,可能导致一些从未搜索过的路径信息素浓度减小为0,导致过早收敛,解的全局最优性降低
总信息量Q对算法性能的影响有赖于αβρ的选取,以及算法模型的选择。
Q对ant-cycle模型蚁群算法的性能没有明显影响,不必特别考虑,可任意选取。
E. 蚁群算法应用实例有哪些
蚁群算法的应用实例主要包括以下几个方面:
旅行商问题:
- 简介:蚁群算法最早且最着名的应用之一,用于解决给定一组城市以及城市间距离,求访问每个城市仅一次并返回出发城市的最短路径问题。
- 应用:物流配送、路径规划等领域。
车辆路由问题:
- 简介:在旅行商问题基础上,考虑多个车辆从同一或多个仓库出发,向多个客户提供服务并返回仓库的路径规划问题。
- 应用:物流配送优化、公共交通规划等。
指派问题:
- 简介:将一组任务分配给一组人员,使得总成本最小化的组合优化问题。
- 应用:员工排班、任务分配等场景。
Jobshop调度问题:
- 简介:在多个作业需要在有限数量的机器上加工,且每个作业需要按照特定顺序在不同机器上完成的调度问题。
- 应用:制造业生产调度、车间作业计划等。
图着色问题:
- 简介:给定一个图,用尽可能少的颜色给图的顶点着色,使得相邻顶点颜色不同的组合优化问题。
- 应用:时间表安排、无线频谱分配等。
网络路由问题:
- 简介:利用蚁群算法的信息分布式、动态、随机和异步等特点,解决网络中的数据包传输路径选择问题。
- 应用:互联网路由优化、通信网络设计等。
综上所述,蚁群算法因其独特的机制和优势,在多个组合优化问题中得到了广泛应用,并在不同领域展现出了良好的性能和效果。
F. 哪本python书立有蚁群算法
简介
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
定义
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有像其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
解决的问题
三维地形中,给出起点和重点,找到其最优路径。
程序代码:
numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #蚂蚁个数numcity = coordinates.shape[0] #城市个数alpha = 1 #信息素重要程度因子beta = 5 #启发函数重要程度因子rho = 0.1 #信息素的挥发速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩阵pathtable = np.zeros((numant,numcity)).astype(int) #路径记录表distmat = getdistmat(coordinates) #城市的距离矩阵lengthaver = np.zeros(itermax) #各代路径的平均长度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路径长度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路径长度while iter < itermax:# 随机产生各个蚂蚁的起点城市if numant <= numcity:#城市数比蚂蚁数多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #蚂蚁数比城市数多,需要补足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #计算各个蚂蚁的路径距离for i in range(numant):visiting = pathtable[i,0] # 当前所在的城市#visited = set() #已访问过的城市,防止重复#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未访问的城市unvisited.remove(visiting) #删除元素for j in range(1,numcity):#循环numcity-1次,访问剩余的numcity-1个城市#每次用轮盘法选择下一个要访问的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一个要访问的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #蚂蚁的路径距离包括最后一个城市和第一个城市的距离#print length# 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次数指示器+1#观察程序执行进度,该功能是非必须的if (iter-1)%20==0:print iter-1# 做出平均路径长度和最优路径长度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最优路径图bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()