哈希查找算法
❶ 数据结构哈希算法
1,直接寻址法:
函数公式:f(key)=a*key+b (a,b为常数)
这种方法的优点是:简单,均匀,不会产生冲突。但是需要事先知道关键字的分布情况,适合查找表较小并且连续的情况。
2,数字分析法:
比如我们的11位手机号码“136XXXX7887”,其中前三位是接入号,一般对应不同运营公司的子品牌,如130是联通如意通,136是移动神州行,153是电信等。中间四们是HLR识别号,表示用户归属地。最后四们才是真正的用户号。
若我们现在要存储某家公司员工登记表,如果用手机号码作为关键字,那么极有可能前7位都是相同的,所以我们选择后面的四们作为哈希地址就是不错的选择。
3,平方取中法:
故名思义,比如关键字是1234,那么它的平方就是1522756,再抽取中间的3位就是227作为哈希地址。
4,折叠法:
折叠法是将关键字从左到右分割成位数相等的几个部分(最后一部分位数不够可以短些),然后将这几部分叠加求和,并按哈希表表长,取后几位作为哈希地址。
比如我们的关键字是9876543210,哈希表表长三位,我们将它分为四组,987|654|321|0 ,然后将它们叠加求和987+654+321+0=1962,再求后3位即得到哈希地址为962,哈哈,是不是很有意思。
5,除留余数法:
函数公式:f(key)=key mod p (p<=m)m为哈希表表长。
这种方法是最常用的哈希函数构造方法。
6,随机数法:
函数公式:f(key)= random(key)。
这里random是随机函数,当关键字的长度不等是,采用这种方法比较合适。
两种哈希函数冲突解决方法:
我们设计得最好的哈希函数也不可能完全避免冲突,当我们在使用哈希函数后发现两个关键字key1!=key2,但是却有f(key1)=f(key2),即发生冲突。
❷ 哈希查找算法
散列表(Hash table,也叫哈希表),是根据键(Key)而直接访问在内存存储位置的数据结构。也就是说,它通过计算一个关于键值的函数,将所需查询的数据映射到表中一个位置来访问记录,这加快了查找速度。这个映射函数称做散列函数,存放记录的数组称做散列表。
通过某种转换关系,使关键字适度的分散到指定大小的的顺序结构中,越分散,则以后查找的时间复杂度越小,空间复杂度越高。
Hash是一种典型以空间换时间的算法,比如原来一个长度为100的数组,对其查找,只需要遍历且匹配相应记录即可,从空间复杂度上来看,假如数组存储的是byte类型数据,那么该数组占用100byte空间。现在我们采用Hash算法,我们前面说的Hash必须有一个规则,约束键与存储位置的关系,那么就需要一个固定长度的hash表,此时,仍然是100byte的数组,假设我们需要的100byte用来记录键与位置的关系,那么总的空间为200byte,而且用于记录规则的表大小会根据规则,大小可能是不定的。
通过哈希函数,我们可以将键转换为数组的索引(0-M-1),但是对于两个或者多个键具有相同索引值的情况,我们需要有一种方法来处理这种冲突。
一种比较直接的办法就是,将大小为M 的数组的每一个元素指向一个链表,链表中的每一个节点都存储散列值为该索引的键值对,这就是拉链法。下图很清楚的描述了什么是拉链法。
“John Smith”和“Sandra Dee” 通过哈希函数都指向了152 这个索引,该索引又指向了一个链表, 在链表中依次存储了这两个字符串。
单独链表法:将散列到同一个存储位置的所有元素保存在一个链表中(聚集),该方法的基本思想就是选择足够大的M,使得所有的链表都尽可能的短小,以保证查找的效率。当链表过长、大量的键都会映射到相同的索引上,哈希表的顺序查找会转变为链表的查找,查找时间将会变大。对于开放寻址会造成性能的灾难性损失。
实现基于拉链表的散列表,目标是选择适当的数组大小M,使得既不会因为空链表而浪费内存空间,也不会因为链表太而在查找上浪费太多时间。拉链表的优点在于,这种数组大小M的选择不是关键性的,如果存入的键多于预期,那么查找的时间只会比选择更大的数组稍长。另外,我们也可以使用更高效的结构来代替链表存储。如果存入的键少于预期,索然有些浪费空间,但是查找速度就会很快。所以当内存不紧张时,我们可以选择足够大的M,可以使得查找时间变为常数,如果内存紧张时,选择尽量大的M仍能够将性能提高M倍。
线性探测法是开放寻址法解决哈希冲突的一种方法,基本原理为,使用大小为M的数组来保存N个键值对,其中M>N,我们需要使用数组中的空位解决碰撞冲突。如下图所示:
对照前面的拉链法,在该图中,“Ted Baker” 是有唯一的哈希值153的,但是由于153被“Sandra Dee”占用了。而原先“Snadra Dee”和“John Smith”的哈希值都是152的,但是在对“Sandra Dee”进行哈希的时候发现152已经被占用了,所以往下找发现153没有被占用,所以索引加1 把“Sandra Dee”存放在没有被占用的153上,然后想把“Ted Baker”哈希到153上,发现已经被占用了,所以往下找,发现154没有被占用,所以值存到了154上。
单纯论查找复杂度:对于无冲突的Hash表而言,查找复杂度为O(1)。
原文: 哈希查找 - 卖贾笔的小男孩 - 博客园 (cnblogs.com)
❸ 【ALG 算法】023 | 分块查找、散列查找(哈希查找)
在查找算法中,分块查找和散列查找(哈希查找)是两种常用的技术。分块查找将数据按大小分为若干块,每块内元素无序,块间有序,通过索引表确定待查记录所属块,然后在块内进行顺序查找,平均查找长度与块数和块内元素数相关。分块查找在块内有序的情况下效率较高,但块间不连续导致查找效率降低。
散列查找通过哈希函数将关键字与存储位置建立联系,形成散列表。哈希函数将关键字映射到特定的存储位置,解决关键字冲突的方式有拉链法和开放寻址法。拉链法通过链表解决冲突,开放寻址法则通过探测序列寻找下一个空闲位置。开放寻址法包括线性探测、平方探测和伪随机序列探测,其中平方探测法更不易产生聚集问题。散列查找的理想时间复杂度为O(1),但实际效率受装填因子(冲突频率)影响,合理设计哈希函数可以提高查找效率。
对于特定数据集,选择合适的哈希函数至关重要。例如,对于连续分布的学号,使用取余法生成哈希值较为合适;对于非连续分布的关键字,考虑在关键字的特定位数上构造哈希函数以提高均匀性。哈希函数的选择应综合考虑关键字分布和存储需求,以优化查找效率和空间利用。
此外,冲突处理方式影响查找效率和空间占用。拉链法通过链表解决冲突,适合少量冲突情况;开放寻址法通过探测序列寻找空位,适于大量冲突场景。线性探测法简单但可能产生聚集问题,平方探测法和伪随机探测法则能降低聚集风险。在实际应用中,合理设计冲突处理策略和优化哈希函数,可以有效提高查找算法的性能。