车牌检测算法
⑴ 车牌识别用什么模式识别算法
安快车牌识别采用200万高清DSP硬识别,三层网络神经算法~其中第一层是输入单元,第二层称为隐含层,第三层称为输出层!
⑵ 车牌识别算法的研究与分类
车牌识别系统要综合应用多种手段提取车牌区域,对汽车牌照的精确定位并最终完成对汽车牌照的识别。因此车牌识别系统要应对多种复杂环境,如车流量高峰期、照射反光、车牌污染等。利用模拟人脑智能的ANN,在识别车牌时能进行联想记忆与推理,能够较好地解决字符残缺不完整而无法识别的问题。
车牌识别方法的研究
车牌识别系统主要包括车牌定位、字符分割、字符识别等工作模块,同时系统统自身具有良好的维护性和扩展性,可在无需为车辆加装其他特殊装置情况下实现对车辆的自动检测。
车牌定位方法的研究
车牌定位就是把车牌区域完整的从一副具有复杂背景的车辆图像中分割出来,它是解决图像处理中的实际问题,其方法多种多样,当前最常见的定位技术主要有:基于边缘检测的方法、基于彩色分割的方法、基于小波变换的方法、遗传算法和人工神经网络技术等。
基于边缘检测的车牌定位方法:在对车牌进行定位前,先将汽车图像通过灰度变换、直方图均衡化等增强预处理,再经二值化,最后利用边缘检测算子对图像进行边缘检测。检测到边缘后在进行区域膨胀,腐蚀去无关的小物件,这时图像会呈现出多个连通的判断区域,最后找出所有连通域中最可能是车牌的那一个便可 。
基于色彩分割的车牌定位方法:主要由彩色分割和日标定位等模块组成,在进行色彩分割前,要先将原始图像从RGB色彩空间转换到HSV空间,再在HSV空间内进行色彩分析。具体的分割运算:依次将四种车牌底色中一种为基准,对图像中每一像素先对照表1进行色彩分量比较,对超出基准色限定范围的像素直接设置为背景色(白色),否则统计所有落在该区间内的像素三分量的均值,作为分割计算的颜色中心,再对所有区间范围内的像素计算其与颜色中心的色彩距离,若距离大于阀值,则设置为背景色,否则设置为日标色(黑色)
由于图像背景的复杂性,色彩过滤后的图像仍然可能包含多个可能的目标区域,需进一步使用车牌体态比特征对多个目标区域进行过滤。
基于小波变换的车牌定位方法:先将车辆图像转换成索引图像,然后对索引图像作用小波变换,获取图像在不同子带的小波系数。车牌识别特征提取就是基于汽车图像在小波变换后的LH高频子带,根据图像中车牌区域的小波系数幅值大、密度高的特点,可以通过作用一个阈值来滤掉非牌照候选区域的小波系数。通过小波尺度分解提出纹理清晰且具有不同空间分辨率、不同方向的边缘子图;再利用车牌日标区域具有水平方向低频、垂直方向高频的特点实现子图提取,最后用数学形态学方法对小波分解后的细节图像进行一系列的形态运算,进一步消除无用信息和噪声,以确定车牌位置。
基于遗传算法的车牌定位方法:车牌日标区域的主要特点有车牌底色往往与车身颜色、字符颜色有较大差异;另外牌照的长度比变化有一定范围,存在一个最大和最小长宽比。根据这些特点,可以在灰度图像的基础上提取相应的特征。还有车牌内字符之间的间隔比较均匀,字符和牌照底色在灰度值上存在跳变,而字符本身与牌照底的内部都有较均匀灰度。又由于车牌有一个连续或由于磨损而不连续的边框,车牌内字符有多个,基本呈水平排列,所以在牌照的矩形区域内存在较丰富的边缘,呈现出规则的纹理特征,因此在实际中我们只要先对彩色图像进行灰度化和二值化处理,采用反映不同疏密度的一维滤波器组在水平方向对二值图像进行滤波便可获得车牌图像的纹理特征向量,再对待定局部区域图像进行滤波处理获得其特征向量,将其与车牌特征描述向量进行比较就能得到该区域作为车牌区的可能性。
采用神经网络实现车牌定位算法:可采用对灰度图像直接感知的方法实现,即使用一个滑动窗口作为采样窗口(可根据车牌特征选择长条形或狭长形滑动窗口),在灰度图像上依次移动,将窗口覆盖下的图像块作为神经网络的输入,所采用的BP网络是3层全连接前馈网络,其输入层神经元数日为滑动窗口的尺寸,其输出层神经元数日为l。当输出接近二分之一时,表示滑动窗口下的图像块属于车牌区域:当输出接近二分之一时,表示滑动窗口下的图像块属于背景区域。此算法的样本集的选择和搜索策略都是很重要的,这都会对定位效果有影响,因此首先要对车牌和北京交替反复采样,并且要在所选图像中尽量包括各种不同光照条件、背景复杂度和牌照颜色,以有利于网络实现泛化,这样可以加强网络的容错性;而对于搜索策略而言,由于车牌一般位于图像的中下方,因此一般采取白下而上遍历,这样不容易误将车型标志处定位为车牌区域,并且当遍历图像后出现不止一个候选车牌区域的时候,也应优先考虑最下的候选车牌区域。另外,由于神经网络具有一定的容错性,对于倾斜角度较大的车牌,要在神经网络处理之前先进行水平校正。
字符分割方法的研究
字符分割的任务是把多行或多字符图像中的每个字符从整个图像中切割出来成为单个字符。字符分割的算法很多,通常根据处理对象的不同采用不同的算法。常见的方法主要有:模板匹配法、水平投影法、聚类分析法、基于自适应退化形态特征的图像分割法等,在这里我们详细阐述前三种方法。
模板匹配法:此方法先在二值图像上计算竖直积分投影的平滑曲线,搜索平滑曲线的局部最小值得到一个波谷位置序列;再将相邻两个波谷分别作为左右边界提取出一组矩形区域;最后,根据一定的规则对矩形区域进行删除、分裂、合并及调整大小,从而实现对车牌区域的单字符分割。
水平投影法:此方法先自下而上再白上而下对车牌区域图像进行逐行扫描,找到并分别记录下扫描到的第1个白色像素点位置,确定图像大致的高度范围;在此高度范围之内再自左向右逐行扫描,遇到第1个白色像素时认为是字符分割的起始位置,然后继续扫描,直至遇到没有白色像素的列,则认为是这个字符分割结果。重复上述过程,直至图像的最右端,得到每个字符比较精确的宽度范围:在已知的每个字符比较精确的宽度范围内,再分别进行自上而下和白下而上的逐行扫描来确定每个字符精确的高度范围。
聚类分析法:此方法是按照属于同一个字符的像素构成一个连通域的原则,再结合先验知识,字符的高度、间距的固定比例关系等,来逐个分割车牌区域中的字符的。
⑶ 车牌识别算法主要有哪些方法呢
从火眼臻睛车牌识别网站上了解到的,车牌识别算法主要有(1)启发式车牌定位;(2)大规模神经网络识别;(3)易混淆字符处理;三个方面的处理方法。车牌识别算法相对于车牌识别系统来说还是很重要的,这个决定着车牌识别系统的识别率的高低。
⑷ 在车牌识别中当前最先进的车牌定位方法有哪
从根本上讲,车牌定位的算法分为三类,一类是基于边缘的,一类是基于颜色的,一类是基于机器学习的,从实验结果可看出,基于边缘的最简单也最有效,如果对于收费站和小区的应用,做到99%以上的检测率不是件难事,但如果场景复杂一点,误检会比较多,但并不会漏掉真正的车牌,只是虚警率高点,可以通过先验知识、颜色和后面的分割加以去除,误检不是重点。基于颜色的定位算法,从根本上讲也可以算是基于边缘的一种,无非是利用彩色边缘或者灰度图像边缘和颜色一起来定位,基于颜色的车牌定位算法用于高清图片效果不错,对于一般的场景我认为没必要用颜色进行定位,但初期用颜色先去除一些明显不是车牌的区域还是比较有效的。基于机器学习的算法进行车牌定位或者说检测,关键是找到好的特征和好的训练方法,不少人利用adaboost+haar特征进行车牌检测,从我的实验结果来看,检测率也能达到99%以上,但同时虚警率也非常高,会出现很多误检,而且很难把车牌的区域完整的检测出来,所以如果单独要用机器学习的算法还是不太可行,不过可以先利用边缘信息找到候选区域,然后用adaboost去去除非车牌区域,这个效果还是蛮不错的。
对于边缘的检测,如果车牌在图像中占的比例不是很小,普通的差分和全局二值化就可以达到很好的效果,如果对于高清图像(譬如要检测几个车道)或者场景很复杂,导致车牌所占图像的比例很小,还有就是车牌处于比较暗的地方,而整个场景很亮,这个时候差分得到的边缘就不会很丰富,如果利用全局二值化就可能导致车牌区域检测不到边缘,解决办法一就是对图像进行灰度拉伸或增强,解决办法二就是换边缘检测的方法(譬如sobel),解决办法三就是改进二值化的方法。对于图像增强的方法我要特别提一下直方图均衡化,很多论文上都会说对输入图片先进行直方图均衡化,但我的实验发现,晚上的图片如果进行直方图均衡化操作后会导致噪点特别多,而且可能会导致车牌区域检测不到边缘,总之图像增强是一把双刃剑,需要慎重考虑。
如果利用边缘进行定位,关键是要想办法一定要检测出车牌区域的边缘。
总结一下车牌定位,利用边缘是王道,可以先粗检再精检,颜色可以用于精定位和去除误检,机器学习如果想要好的结果得需要好的特征,但目前好像还没有。我个人认为车牌定位的难点不在于找到车牌区域,而在于怎么对车牌区域进行更精确的定位,而精定位的难点在于左右精定位,以便于后面的分割算法。
⑸ 车牌定位有哪些算法,各有什么特点
这个 文字不是一般的多 建议你还是去下载研究生的论文和期刊吧,如果懒的话,网络文库里找,就有很多了
1) 基于车牌图像色彩信息定位法[12]。我国车牌主要由四种类型组成:蓝底白字、黄底
黑字、白底红字和黑底白字。根据车牌底色信息可以准确地定位出车牌的边界。该方法识别滤高、适应性强,但易受光照条件和背景干扰且运算量一般较大,不适合用于实时性要求高的环境中。
2) 基于边缘检测的定位法[13]。 车牌字符区域灰度频率变化是车牌区域最稳定的特
征,可以利用它的变化来进行车牌定位。首先对车辆图像进行增强,然后再进行边缘提取,最后利用水平扫描线等方法进行车牌区域的检测。该类方法的定位准确率较高,反映时间快,能有效去掉噪声,适合于背景较复杂的车辆图像。但是对车牌严重褪色的情况,由于检测不到字符笔画的边缘会导致定位失败。
3) 基于车牌几何特征车定位法[14]。我国车牌标准外轮廓尺寸为440*140且为矩形,
整个车牌的宽高比近似为3: 1。利用这种固有特征进行车牌边框提取车牌。这类方法只在车牌位置基本保持水平,同时边框清晰明显时才有效,但若车牌本身的边框是断裂,残缺的或采集到的图像偏离水平角度较大,都会影响定位的准确性,故使用范围较窄。
4) 基于频谱分析的车牌定位法[15]。该类方法将图像从空间域变换到频率域进行分析,
如DFT变换法和采用小波变换法等。小波分析可以在不同的分辨率层次上对图像进行分割,在低分辨率层次上进行粗分割,这样节约时间同时为细分割缩小检测范围。而在高分辨率层次上实现车牌区域的准确定位。但当车辆图像中存在燥声时,会对准确识别车牌区域带来很大的干扰,影响车牌定位的准确性。