当前位置:首页 » 操作系统 » 仔细的算法

仔细的算法

发布时间: 2025-01-10 18:28:30

A. 谁给说说派(圆周率)的4中算法

为什么要算 PI?计算机最原始的用途就是进行人类无法完成的复杂运算,算 PI 就是这样的运算之一。虽然算 PI 本身没有多大的实际意义,但是对于计算机爱好者来说作为一种编程的挑战,还是很有意思的。算 PI 看似简单,其实它还牵涉到一些有用的数学知识。第一类算法:arctan 的级数展开PI/4 = 4 arctan(1/5) - arctan(1/239) (1)arctan(x) = x - x3/3 + x5/5 - x7/7 + .... (2)很容易想到,要得到超高精度的 PI 值,实数在计算机中必须以数组的形式进行存取,数组的大小跟所需的有效位数成正比。在这个算法中,PI 的有效位数 n 随 (2) 的求和项数线性增加。而为计算 (2) 中的每一项,需要进行超高精度实数除以小整数(52, 2392, 2k+1)的循环,循环所需次数也跟 n 成正比。所以,这个算法总的时间复杂度为 O(n2)。这个算法的优点是简单,而且只需要进行整数运算。下面给出我写的算 PI 程序。在程序中,我采用了一些提高速度的措施:超高精度实数以数组的形式进行存取,数组元素的类型为 64 位整数(long long),每个元素储存 12 个十进制位;对 xk (x = 1/5, 1/239) 的头部和尾部的 0 的数量进行估计,只对非 0 的部分进行计算。另外,还有许多跟 (1) 类似的式子,但不常用。例如:PI/4 = arctan(1/2) + arctan(1/3)PI/4 = 8 arctan(1/10) - arctan(1/239) - 4 arctan(1/515)第二类算法:与 1/PI 有关的级数1/PI = (sqrt(8) / 9801) sumk=0~inf { [(4k)! (1103 + 26390k)] / [(k!)4 3964k] } (Ramanujan)1/PI = (sqrt(10005) / 4270934400) sumk=0~inf { [(6k)! (13591409 + 545140134k)] / [(k!)3 (3k)! (-640320)3k] } (Chudnovsky)以上两个级数(还有其它类似形式的级数,但不常用)比起 arctan 的泰勒级数要复杂得多。虽然仍然是线性收敛,总的时间复杂度也仍然是 O(n2),但它们的收敛速度相当快, (Ramanujan) 每项可以增加 8 位有效数字, (Chudnovsky) 每项可以增加 14 位。在这个算法中,除了要进行超高精度实数(数组形式)和小整数的运算外,还有一次超高精度实数的开方和倒数的运算,这需要用到 FFT(快速傅立叶变换),在下文叙述。第三类算法:算术几何平均值和迭代法算术几何平均值(Arithmetic-Geometric Mean, AGM) M(a, b) 定义如下:a0 = a, b0 = b
ak = (ak-1 + bk-1) / 2, bk = sqrt(ak-1 bk-1)
M(a, b) = limk->inf ak = limk->inf bk然后,由椭圆积分的一系列理论(抱歉,过程我不懂)可以推导出如下公式:a0 = 1, b0 = 1 / sqrt(2)
1/PI = { 1 - sumk=0~inf [2k (ak2 - bk2)] } / 2M(a0, b0)2 (AGM)根据这条公式可以制定适当的迭代算法。在迭代过程中,有效位数随迭代次数按 2 的指数增加,即每迭代一次有效位数乘 2。算法中的超高精度实数的乘、除、开方等运算需要使用 FFT,在下文叙述。综合考虑 FFT 的时间复杂度,整个算法的时间复杂度约为 O(n log(n)2)。除了 (AGM) 以外,还有其它的迭代序列,它们具有同样的时间复杂度。例如下面的这个序列将按 4 的指数收敛到 1/PI:y0 = sqrt(2) - 1, a0 = 6 - 4 sqrt(2)
yk = [1 - sqrt(sqrt(1 - yk-14))] / [1 + sqrt(sqrt(1 - yk-14))], ak = (1 + yk)4 ak-1 - 22k+1 yk (1 + yk + yk2)
1/PI = limk->inf ak (Borwein)FFT如上所述,第二和第三类算法不可避免地要涉及超高精度实数(数组形式存取的多位数)的乘、除、开方等运算。多位数乘法如果按照常规方法来计算,逐位相乘然后相加,其时间复杂度将达到 O(n2)。使用 FFT 可大大减少计算量。设有复数数组 a[k] 和 b[k] (k=0~n-1),正向和反向的离散傅立叶变换(DFT)定义如下: (i = sqrt(-1))b = FFTforward(a) : b[k] = sumj=0~n-1 ( a[j] e-i*j*2PI*k/n ) (3)b = FFTbackward(a) : b[k] = (1/n) sumj=0~n-1 ( a[j] ei*j*2PI*k/n ) (4)(3) 和 (4) 中的 (1/n) 可以放在任何一个式子中,也可以拆成 (1/sqrt(n)) 同时放在两个式子中,目的是保证正向和反向傅立叶变换以后不会相差一个因子。当 n 的所有素因子均为小整数,尤其是当 n 为 2 的整数次幂的时候,使用适当的算法经过仔细的协调,可以避免多余的计算,使离散傅立叶变换 (3) 和 (4) 减少至 O(n log(n)) 的时间复杂度,即所谓的快速傅立叶变换(FFT)。具体的细节请查阅相关书籍。下面给出我写的一段 FFT 程序,仅供参考。另外也有已经开发的 FFT 函数库,例如 FFTW ,可以直接使用。fft.cpp FFT 的 C++ 源程序利用 FFT,要计算 n1 位和 n2 位的两个多位数乘法,可以这样进行:开辟两个长度为 n(n>=n1+n2,取 2m 最佳) 的复数数组,将两个多位数从低位到高位分别填入,高位补 0。对两个数组分别进行正向傅立叶变换。将得到的两个变换后的数组的对应项相乘,然后进行反向傅立叶变换,最后得到一个结果数组。由于傅立叶变换是在复数域中进行的,因此还要对结果数组进行取整和进位,才能得到最终的乘积。值得留意的是傅立叶变换的精度问题。我们知道,在计算机中实数用单精度数或双精度数表示,它们会存在一定的误差。在计算多位数乘法时,n 往往是一个很大的数字,傅立叶变换过程中需要对数组的每一项进行求和,如何保证精度带来的误差不会因为求和而超出允许的范围?我的观点是必须使用双精度实数,而且由于统计特性,精度带来的误差在求和过程中不会很大,一般不会影响计算的正确性。如果需要保证计算的正确性,我想到两种检查方法。第一种是取模验算。例如,如果乘数和被乘数对 17 的模分别是 8 和 6,那么积对 17 的模就应该是 14。第二种是检查运算结果中浮点数偏离整数的最大值。如果偏差只有比如 10-3 量级,我们可以认为这个尺度的乘法运算很安全;如果偏差达到 0.5,说明运算已经出错了;如果偏差达到 0.1 量级,那也比较危险,也许换个别的乘数和被乘数就溢出了。多位数的倒数和开方可以通过牛顿迭代求根法转化为乘法运算。例如,要计算 x = 1/a ,根据牛顿迭代法令 f(x) = 1/x - a ,可以得到以下迭代序列:x0 ~= 1/a
xk = xk-1 - f(xk-1)/f'(xk-1) = 2xk-1 - axk-12 (5)要计算 x = sqrt(a) ,可以先计算 x = 1 / sqrt(a) ,令 f(x) = 1/x2 - a ,可以得到以下迭代序列:x0 ~= 1 / sqrt(a)
xk = xk-1 - f(xk-1)/f'(xk-1) = (3/2)xk-1 - (1/2)axk-13 (6)(5) 和 (6) 均以 2 的指数收敛到所求结果。还存在其它更复杂一些的迭代序列,它们以更高的指数收敛,在此不提。不过需要提醒的是,跟 (AGM) 不同,这里 (5) 和 (6) 中的 x0 只是 1/a 和 1 / sqrt(a) 的约值,在前几次的迭代中不必进行满 n 位数的乘法运算,因而可以减少计算量。

B. 词语造句:用正弦造句(约30个)

正弦拼音: zheng xian
正弦解释: 直角三角形任意一个锐角的对边和斜边的比,叫做该锐角的正弦,用sin(角)表示。参看〖三角函数〗。
正弦造句: 1、这就是以上的SAI原理中提到的正弦波浪线。
2、上面,我们在同一图中绘制了正弦和余弦曲线。
3、现在,假设您想进行一些简单的处理,比如写出这些角度的正弦值。
4、假设我们同时绘制正弦和余弦曲线。
5、每一个组件都是一种算数指令,诸如加、减、乘、余弦、正弦。
6、当然我也可以在这里,用正弦曲线计算,希望你们能认识到它。
7、我们从简单的正弦曲线开始,将其定制为我们所希望看到的形状。
8、我认为实际上应该是正弦。
9、正弦波形赋予了通过水道的结构轮廓的形状。
10、泰勒级数的效率也无法与现代桌面芯片的内置正弦函数相比。
11、一个能很好地展示这类表单用途的例子是如下所示的这个简单的正弦计算器。
12、现在你们听到的声音,你们听到的频率,会以正弦曲线而变化。
13、我还听到了余弦,还有正弦。
14、数学解释说,正弦曲线是这样的。
15、要准确快速地计算正弦函数和其他函数,需要非常仔细的算法,专门用于避免无意地将小的误差变成大的错误。
16、此外,一个粗略的正弦曲线图表可以在每天或每年的平均每日温度平面图表中看到,虽然这个图形可能和倒置的余弦波看起来很像。
17、假设我们只想看到一个正弦曲线周期。
18、我们使用简单的正弦波模式作为一个简单原创的网页设计和创建单页布局的基础。
19、他们认为水沾在身上靠的是身体表面的亲和力,正弦波状的抖动动作制造了水脱离身体的离心力。
20、这是我们正在采用的一种类似正弦曲线一样的工作方式。
21、XSLT没有正弦函数。
22、因为在r和v中,有交叉乘积,所以得到正弦值。
23、点P,速度向量,垂直于直线,所以该角的正弦值为。
24、双曲正弦、双曲余弦和双曲正切函数也会以常见或特殊形式出现在各种计算中。
25、例如,让我们考虑一下正弦波,也即正弦曲线这样一个描述平稳反复振荡的数学函数。
26、好的,让我们试着把等式,带入正弦函数,或者余弦数来做,你喜欢哪个都行。
27、由于该辨识方法没有将继电和过程输出近似为正弦信号,获得的SOPDT模型能更准确地反映过程的动态特性。
28、本文改进的偶函数和奇函数的AFT算法还分别可以用来计算离散余弦变换(DCT)和离散正弦变换(DST)。

C. 建筑木工梁帮怎么算,50的梁,11的灰厚,梁底5公分,求仔细算法

不用管粱底,梁梆=梁高-板厚
这是正常的梁梆,如果有降板,就是
梁梆=梁高-板厚-降板高度
这是坐梁梆如果是包梁梆就不一样了,要在坐梁梆的基础上加上方木的厚度

热点内容
收件服务器有什么作用 发布:2025-01-10 21:50:01 浏览:387
安卓70缓存 发布:2025-01-10 21:49:03 浏览:680
图像检索算法 发布:2025-01-10 21:43:58 浏览:555
plsqlforupdate 发布:2025-01-10 21:43:50 浏览:913
如何设置健康码快捷方式vivo安卓 发布:2025-01-10 21:39:52 浏览:500
安卓不兼容怎么解决 发布:2025-01-10 21:37:02 浏览:29
linux字体大小 发布:2025-01-10 21:36:21 浏览:492
安卓手机的音量在哪里调 发布:2025-01-10 21:32:11 浏览:613
路由器怎么设置登录密码怎么设置密码 发布:2025-01-10 21:11:12 浏览:893
营运车解压 发布:2025-01-10 21:11:01 浏览:932