当前位置:首页 » 操作系统 » 遗传算法matlab实现

遗传算法matlab实现

发布时间: 2025-01-03 07:40:32

❶ 关于遗传算法的MATLAB实现

function [x fx string]=fun_SuiJiSuanFa2(N,genLenth,Pc,Pm,downbound,upbound,generation)
%[x fx string]=fun_SuiJiSuanFa2(6,16,0.7,0.01,-3,3,100)
%f 表示函数
%N表示染色体种群大小
%genLenth表示染色体长度
%Pc表示交叉概率
%Pm表示突变概率
%downbound
%upbound
%generation循环代数

%进制编码,此处编写为二进制
num=2;
initdata=randi([0 num-1],N,genLenth);
%二进制编码的权值
weight=(num).^(genLenth/2-1:-1:0);
weights=repmat(weight,N,1);
%保存每代的最好值和平均值,
meanally=zeros(1,generation);
maxally=zeros(1,generation);

Nowx=zeros(generation,genLenth);
for k=1:generation
%解码后的整数
allx1=sum(initdata(:,1:genLenth/2).*weights,2);
allx2=sum(initdata(:,genLenth/2+1:end).*weights,2);
%映射到取值范围
delt=(upbound-downbound)/(num^(genLenth/2)-1);
allx1=allx1.*delt+downbound;
allx2=allx2.*delt+downbound;
%染色体的适应性
ally=f(allx1,allx2);
%平均值,最大值
meanally(k)=mean(ally);
maxally(k)=max(ally);
%找下标,确定是哪条染色体
index=find(ally==maxally(k));
Nowx(k,:)=initdata(index(1),:);
%最大值没有提高就取上次的
if(k>=2&&maxally(k)<maxally(k-1))
maxally(k)=maxally(k-1);
Nowx(k,:)=Nowx(k-1,:);
end
%染色体的适应性比率
ratio=ally./sum(ally);
%交叉,变异
%??交叉几个,从第几个开始。
%此处只交叉1个(总共才6个),随机给一个。
sumRatio=cumsum(ratio);
data=zeros(N,genLenth);
for i=1:N/2
Select1=find(sumRatio>=rand);
Select2=find(sumRatio>=rand);
data(2*i-1,:)=initdata(Select1(1),:);
data(2*i,:)=initdata(Select2(1),:);
if(rand<Pc)
%交叉
location=randi([1,genLenth]);
temp=data(2*i-1,location:end);
data(2*i-1,location:end)=data(2*i,location:end);
data(2*i,location:end)=temp;
else
%变异
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i-1,location)=1-data(2*i-1,location);
end
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i,location)=1-data(2*i,location);
end
end
end
initdata=data;
end

fx=max(maxally);
lastIndex=find(maxally==fx);
string=Nowx(lastIndex(1),:);

x(1)=sum(string(1:genLenth/2).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
x(2)=sum(string(1+genLenth/2:end).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
%绘制性能图
%figure,hold on;
clf;figure(1),hold on;
plot((1:k)',meanally,'b.-');
plot((1:k)',maxally,'r.:');
end

function fun=f(x,y)
fun=(1-x).^2.*exp(-x.^2-(1+y).^2)-(x-x.^3-y.^3).*exp(-x.^2-y.^2);
%fun=-(x-1).^2-3.*(y-2).^2+100;
end

❷ 遗传算法及matlab代码实现

深入探索遗传算法的世界,让我们通过MATLAB代码实现这一强大工具。遗传算法,如同自然界的演化过程,凭借其全局寻优和自适应特性,在无求导和连续性要求下寻求最优解。它的核心要素包括:基因型的二进制或浮点编码,通过适应度函数评价个体表现,以及一系列智能选择、交叉和变异操作。
想象一下,搜索问题就像袋鼠跳跃,遗传算法就像一次次的进化跳跃,不断接近山峰。每个个体代表一个可能的解,种群间的竞争与合作驱动着算法前进。从随机生成初始群体,到通过轮盘选择、交叉和变异产生新代,直到找到那颗璀璨的最优解星。
让我们以寻找最大值为例,MATLAB代码如下。初始化20个个体,每代迭代2000次,目标精度设定为0.01。二值化变量 [0,10] 到 [0,1023] 的转换,通过decodechrom函数巧妙实现。适应度计算函数 (calfitvalue.m) 设定目标函数:x+10*sin(5*x)+7*cos(4*x),负目标值设为0,便于评估。
选择过程,selection.m 函数采用轮盘法则,根据个体的适应度比例随机选择。交叉操作在 crossover.m 中进行,以设定的概率进行单点交叉,生成新一代种群。而变异环节,mutation.m 负责在基因位上引入随机性,保持搜索的多样性。
在MATLAB的 gaot 工具箱中,这一切操作无缝集成,从种群初始化到优化迭代,再到最优解的输出和曲线绘制,每个步骤都精心设计,确保算法的高效运行。
现在,让我们一起驾驭遗传算法的力量,通过实践学习和理解这个强大的求解工具,在MATLAB的世界里探索无尽的可能性。在数乐君的引导下,欢迎同学们一起加入这个知识探索之旅,共同体验科学的魅力。

❸ 遗传算法matlab程序代码

下面是一个简单的遗传算法(Genetic Algorithm, GA)的MATLAB实现框架,用于解决基本的优化问题。此代码未包含所有可能的优化和细节,但足以展示GA的基本结构。

```matlab
function [best_sol, best_val] = simple_ga(fitness_func, pop_size, num_gen, num_vars, var_bounds)
% 初始化种群
pop = repmat(var_bounds(:,1) + (var_bounds(:,2) - var_bounds(:,1)) .* rand(pop_size, num_vars), 1, 1);

% 遗传算法主循环
for gen = 1:num_gen
% 计算适应度
fitness = arrayfun(@(ind) fitness_func(ind), pop);

% 选择操作(这里简单使用轮盘赌选择)
selected_indices = rouletteWheelSelection(fitness, pop_size);
mating_pool = pop(selected_indices, :);

% 交叉操作(单点交叉)
offspring = crossover(mating_pool, 0.7);

% 变异操作
offspring = mutation(offspring, 0.01, var_bounds);

% 更新种群
pop = offspring;

% 输出当前最优解(可选)
[best_val, idx] = max(fitness);
best_sol = pop(idx, :);
fprintf('Generation %d: Best Fitness = %f\n', gen, best_val);
end
end

% 假设的轮盘赌选择、交叉和变异函数需要用户根据具体问题实现
```

注意:此代码框架中,`fitness_func` 是用户定义的适应度函数,`pop_size` 是种群大小,`num_gen` 是迭代次数(即代数),`num_vars` 是变量的数量,`var_bounds` 是变量界限的矩阵(每行代表一个变量的最小值和最大值)。此外,`rouletteWheelSelection`、`crossover` 和 `mutation` 函数需要根据具体问题具体实现,这里仅作为占位符。

热点内容
服务器数据库类型 发布:2025-01-05 12:59:32 浏览:416
编译原理移植 发布:2025-01-05 12:49:16 浏览:318
android开屏 发布:2025-01-05 12:43:54 浏览:289
win7用户文件夹 发布:2025-01-05 12:42:30 浏览:621
java培训班南京 发布:2025-01-05 12:29:36 浏览:732
Idea自动编译是什么 发布:2025-01-05 12:28:02 浏览:527
考试笔试编程 发布:2025-01-05 12:15:45 浏览:157
变量配置是什么意思 发布:2025-01-05 12:15:42 浏览:280
行李箱装什么密码锁好 发布:2025-01-05 12:14:57 浏览:976
家用无线存储 发布:2025-01-05 12:14:47 浏览:620