多算法并行
‘壹’ 什么是算法的并行性
这个是计算机的编程里面的问题吧,怎么跑到医疗健康里面了。
‘贰’ 并行算法的介绍
并行算法就是用多台处理机 联合求解问题的方法和步骤,其执行过程是将给定的问题首先分解成若干个尽量相互独立的子问 题,然后使用多台计算机同时求解它,从而最终求得原问题的解.
‘叁’ 并行算法有哪三种设计策略
并行数据挖掘技术不同于其它并行算法的地方在于它需要处理的数据的规模很大。人们知道,对于并行而言,交互之间的消耗(即内存的使用)是比执行时间(计算阶段)重要得多的因素。串行数据挖掘算法对于规模很小的数据也需要大量的运行时间
‘肆’ 用并行可实现的算法有哪些
首先,应用的场合和解决的问题不一样。分布式计算比较倾向于在计算寻找模式的东西,穷举暴力之类的计算。分布式的计算被分解后的小任务互相之间有独立性,节点之间的结果几乎不互相影响,实时性要求不高。而并行计算则比较倾向于一些海量数据进行分析处理的场合,每个节点的每一个任务块都是必要的,计算的结果相互影响,要求每个节点的计算结果要绝对正确,并且在时间上做到同步。举例来说,像MD5破解,就比较适合使用大规模的分布式计算来穷举,但对海量日志数据进行处理来分析用户行为就比较适合并行计算处理。 其次,实现方式区别比较大。分布式计算会是一个比较松散的结构,并行计算则是各节点之间通过高速网络或其它总线之类的东西连接。因此并行计算一般在企业内部进行,而分布式计算可能会跨越局域网,或者直接部署在互联网上,节点之间几乎不互相通信。很多公益性的项目,就是的使用分布式计算的方式在互联网上实现,比如以寻找外星人为目的的SETI项目。
‘伍’ 并行处理的并行算法的基本策略
在并行处理技术中所使用的算法主要遵循三种策略:
1.分而治之法:也就是把多个任务分解到多个处理器或多个计算机中,然后再按照一定的拓扑结构来进行求解。
2.重新排序法:分别采用静态或动态的指令词度方式。
3.显式/隐式并行性结合:显式指的是并行语言通过编译形成并行程序,隐式指的是串行语言通过编译形成并行程序,显式/隐式并行性结合的关键就在于并行编译,而并行编译涉及到语句、程序段、进程以及各级程序的并行性。
二、并行性描述定义
利用计算机语言进行并行性描述的时候主要有三种方案:
1.语言扩展方案:也就是利用各种语言的库函数来进行并行性功能的扩展。
2.编译制导法:也称为智能编译,它是隐式并行策略的体现,主要是由并行编译系统进行程序表示、控制流的分析、相关分析、优化分析和并行化划分,由相关分析得到方法库管理方案,由优化分析得到知识库管理方案,由并行化划分得到程序重构,从而形成并行程序。
3.新的语言结构法:这是显式并行策略的体现。也就是建立一种全新的并行语言的体系,而这种并行语言通过编译就能直接形成并行程序。
三、并行软件
并行软件可分成并行系统软件和并行应用软件两大类,并行系统软件主要指并行编译系统和并行操作系统,并行应用软件主要指各种软件工具和应用软件包。在软件中所牵涉到的程序的并行性主要是指程序的相关性和网络互连两方面。
1.程序的相关性:程序的相关性主要分为数据相关、控制相关和资源相关三类。
数据相关说明的是语句之间的有序关系,主要有流相关、反相关、输出相关、I/O相关和求知相关等,这种关系在程序运行前就可以通过分析程序确定下来。数据相关是一种偏序关系,程序中并不是每一对语句的成员都是相关联的。可以通过分析程序的数据相关,把程序中一些不存在相关性的指令并行地执行,以提高程序运行的速度。
控制相关指的是语句执行次序在运行前不能确定的情况。它一般是由转移指令引起的,只有在程序执行到一定的语句时才能判断出语句的相关性。控制相关常使正在开发的并行性中止,为了开发更多的并行性,必须用编译技术克服控制相关。
而资源相关则与系统进行的工作无关,而与并行事件利用整数部件、浮点部件、寄存器和存储区等共享资源时发生的冲突有关。软件的并行性主要是由程序的控制相关和数据相关性决定的。在并行性开发时往往把程序划分成许多的程序段——颗粒。颗粒的规模也称为粒度,它是衡量软件进程所含计算量的尺度,一般用细、中、粗来描述。划分的粒度越细,各子系统间的通信时延也越低,并行性就越高,但系统开销也越大。因此,我们在进行程序组合优化的时候应该选择适当的粒度,并且把通讯时延尽可能放在程序段中进行,还可以通过软硬件适配和编译优化的手段来提高程序的并行度。
2.网络互连:将计算机子系统互连在一起或构造多处理机或多计算机时可使用静态或动态拓扑结构的网络。静态网络由点一点直接相连而成,这种连接方式在程序执行过程中不会改变,常用来实现集中式系统的子系统之间或分布式系统的多个计算结点之间的固定连接。动态网络是用开关通道实现的,它可动态地改变结构,使之与用户程序中的通信要求匹配。动态网络包括总线、交叉开关和多级网络,常用于共享存储型多处理机中。在网络上的消息传递主要通过寻径来实现。常见的寻径方式有存储转发寻径和虫蚀寻径等。在存储转发网络中以长度固定的包作为信息流的基本单位,每个结点有一个包缓冲区,包从源结点经过一系列中间结点到达目的结点。存储转发网络的时延与源和目的之间的距离(段数)成正比。而在新型的计算机系统中采用虫蚀寻径,把包进一步分成一些固定长度的片,与结点相连的硬件寻径器中有片缓冲区。消息从源传送到目的结点要经过一系列寻径器。同一个包中所有的片以流水方式顺序传送,不同的包可交替地传送,但不同包的片不能交叉,以免被送到错误的目的地。虫蚀寻径的时延几乎与源和目的之间的距离无关。在寻径中产生的死锁问题可以由虚拟通道来解决。虚拟通道是两个结点间的逻辑链,它由源结点的片缓冲区、结点间的物理通道以及接收结点的片缓冲区组成。物理通道由所有的虚拟通道分时地共享。虚拟通道虽然可以避免死锁,但可能会使每个请求可用的有效通道频宽降低。因此,在确定虚拟通道数目时,需要对网络吞吐量和通信时延折衷考虑。
四、硬件技术在硬件技术方面主要从处理机、存储器和流水线三个方面来实现并行。
1.处理机:主要的处理机系列包括CISC、RISC、超标量、VL1W、超流水线、向量以及符号处理机。
传统的处理机属于复杂指令系统计算(CISC)结构。指令系统大,指令格式可变,通用寄存器个数较少,基本上使用合一的指令与数据高速缓存,时钟频率较低,CPI较高,大多数利用ROM 实现微码控制CPU,而当今的精简指令系统计算(RISC)处理机指令格式简单规范,面向寄存器堆,采用重叠寄存器窗口技术,具有多级Cache,多种流水线结构,强调编译优化技术,时钟频率快,CPI低,大多数用硬连线控制CPU。
CISC或RISC标量处理机都可以采用超标量或向量结构来改善性能。标量处理机在每个周期内只发射一条指令并要求周期只完成从流水线来的一条指令。而在超标量处理机中,使用了多指令流水线,每个周期要发射多条指令并产生多个结果。由于希望程序中有许多的指令级并行性,因此超标量处理机更要依靠优化编译器去开发并行性。
VL1W 结构是将水平微码和超标量处理这两种普遍采用的概念结合起来产生的。典型的超长指令字VL1W 机器指令字长度有数百位。在VLlW 处理机中,多个功能部件是并发工作的,所有的功能部件共享使用公用大型寄存器堆,由功能部件同时执行的各种操作是用VL1W 指令来同步的,每条指令可指定多个操作。VL1W 指令译码比超标量指令容易,但在开发不同数量的并行性时总是需要不同的指令系统。VL1W 主要是开发标量操作之间的并行性,它的成功与否很大程度取决于代码压缩的效率,其结构和任何传统的通用处理机完全不兼容。即使同一结构的不同实现也不大可能做到彼此二进制兼容。VL1W 的主要优点在于它的硬件结构和指令系统简单,在科学应用领域可以发挥良好作用,但在一般应用场合可能并不很好用。
向量处理机对数组执行向量指令,每条指令都包含一串重复的操作。它是专门设计用来完成向量运算的协处理机,通常用于多流水线超级计算机中。向量处理机可以利用循环级展开所得的并行性,它可以附属于任何标量处理机。专用的向量流水线可以在循环控制中消除某些软件开销,它的效果与优化编译器将顺序代码向量化的性能很有关系。从理论上说,向量机可以具有和超标量处理机同样的性能,因此可以说向量机的并行性与超标量机相同。
符号处理机是为AI应用而研制的,已用于定理证明、模式识别、专家系统、知识工程、文本检索、科学以及机器智能等许多应用领域。在这些应用中,数据和知识表达式、原语操作、算法特性、存储器、I/0和通信以及专用的结构特性与数值计算是不一样的,符号处理机也称为逻辑程序设计语言处理机、表处理语言处理机或符号变换器。符号处理并不和数值数据打交道,它处理的是逻辑程序、符号表、对象、剧本、黑板、产生式系统、语义网络、框架以及人工神经网络等问题。这些操作需要专门的指令系统,通常不使用浮点操作。
2.存储器:存储设备按容量和存取时间从低到高可分为寄存器、高速缓存、主存储器、磁盘设备和磁带机五个层次。较低层存储设备与较高层的相比,存取速度较快、容量较小,每字节成本较高、带宽较宽、传输单位较小。
存放在存储器层次结构中的信息满足三个重要特性:包含性、一致性和局部性。所谓包含性,指的是一个信息字的复制品可以在比它高的所有层中找到,而如果在高层中丢失了一个信息,则在比它低的所有层中此信息也将丢失。CPU 和高速缓存之间的信息传送是按字进行的,高速缓存和主存储器间用块作为数据传送的基本单位,主存和磁盘之间又是以页面为基本单位来传送信息的,而在磁盘和磁带机之间的数据传送则是按文件级处理的。所谓一致性要求的是同一个信息项与后继存储器层次上的副本是一致的。也就是说,如果在高速缓存中的一个字被修改过,那么在所有更高层上该字的副本也必须立即或最后加以修改。为了尽量减少存储器层次结构的有效存取时间,通常把频繁使用的信息放在较低层次。维护存储器层次结构一致性一般有两种策略,一种是写直达策略,也就是如果,则立即在所有高层存储器中进行同样的修改;另一种是写回策略,也就是在较低层中对信息进行修改后并不立即在高层存储器中进行相应的修改,而是等到该信息将被替换或将从低层中消失时才在所有高层存储器中进行同样的修改。甚至可以将写直达和写回策略的优点结合起来,形成写一次协议来维护存储器的一致性。
存储器的层次结构是在一种程序行为——访问的局部性基础上开发出来的。主要有时间局部性、空间局部性和顺序局部性。时间局部性指的是最近的访问项很可能在不久的将来再次被访问。它往往会引起对最近使用区域的集中访问。空间局部性表示一种趋势,指的是一个进程访问的各项其地址彼此很近。顺序局部性指的是在典型程序中,除非是转移指令,一般指令都是顺序执行的。
在多处理机系统中一般使用共享存储器。对共享存储器的组织一般采用低位交叉、高位交叉、高低位交叉三种方法。低位交叉又称并发存取,它是把相邻的地址放在相邻的存储器模块中,在访问时不容易产生冲突,并行性较好,但可靠性容错能力和扩展性均较差。高位交叉又称允许同时存取,它是把相邻地址分配到同一个存储器模块中,可靠性、容错能力和扩展性均较强,但访问时易产生冲突,带宽较窄,并行性较差。高低位交叉存取又称C—s存取,它是结合了高位交叉和低位交叉两种方法的优点,既解决了冲突问题,又能有效地提高容错能力和并行性,最适合于向量处理机结构。
3.流水线:流水线技术主要有指令流水线技术和运算流水线技术两种。
指令流水线技术主要目的是要提高计算机的运行效率和吞吐率。它主要通过设置预取指令缓冲区、设置多功能部件、进行内部数据定向、采取适当的指令调度策略来实现。指令调度的策略主要有静态和动态两种,静态词度是基于软件的,主要由编译器完成,动态词度是基于硬件的,主要是通过硬件技术进行。
运算流水线主要有单功能流水线和多功能流水线两种。其中多功能流水线又可分为静态流水线和动态流水线。静态流水线技术只用来实现确定的功能,而动态流水线可以在不同时间重新组合,实现不同的功能,它除流线连接外,还允许前馈和反馈连接,因此也称为非线性流水线。这些前馈和反馈连接使得进入流水线的相继事件的词度变得很不简单。由于这些连接,流水线不一定从最后一段输出。根据不同的数据流动模式,人们可以用同一条流水线求得不同功能的值。
并行计算机发展简述
40 年代开始的现代计算机发展历程可以分为两个明显的发展时代:串行计算时代、并行计算时代。每一个计算时代都从体系结构发展开始,接着是系统软件(特别是编译器与操作系统)、应用软件,最后随着问题求解环境的发展而达到顶峰。创建和使用并行计算机的主要原因是因为并行计算机是解决单处理器速度瓶颈的最好方法之一。
并行计算机是由一组处理单元组成的,这组处理单元通过相互之间的通信与协作,以更快的速度共同完成一项大规模的计算任务。因此,并行计算机的两个最主要的组成部分是计算节点和节点间的通信与协作机制。并行计算机体系结构的发展也主要体现在计算节点性能的提高以及节点间通信技术的改进两方面。
60 年代初期,由于晶体管以及磁芯存储器的出现,处理单元变得越来越小,存储器也更加小巧和廉价。这些技术发展的结果导致了并行计算机的出现,这一时期的并行计算机多是规模不大的共享存储多处理器系统,即所谓大型主机(Mainframe)。IBM360 是这一时期的典型代表。
到了60 年代末期,同一个处理器开始设置多个功能相同的功能单元,流水线技术也出现了。与单纯提高时钟频率相比,这些并行特性在处理器内部的应用大大提高了并行计算机系统的性能。伊利诺依大学和Burroughs 公司此时开始实施IlliacIV 计划,研制一台64 个CPU 的SIMD 主机系统,它涉及到硬件技术、体系结构、I/O 设备、操作系统、程序设计语言直至应用程序在内的众多研究课题。不过,当一台规模大大缩小了的16CPU 系统终于在1975 年面世时,整个计算机界已经发生了巨大变化。
首先是存储系统概念的革新,提出虚拟存储和缓存的思想。IBM360/85 系统与360/91是属于同一系列的两个机型,360/91 的主频高于360/85,所选用的内存速度也较快,并且采用了动态调度的指令流水线;但是,360/85 的整体性能却高于360/91,唯一的原因就是前者采用了缓存技术,而后者则没有。
其次是半导体存储器开始代替磁芯存储器。最初,半导体存储器只是在某些机器被用作缓存,而CDC7600 则率先全面采用这种体积更小、速度更快、可以直接寻址的半导体存储器,磁芯存储器从此退出了历史舞台。与此同时,集成电路也出现了,并迅速应用到了计算机中。元器件技术的这两大革命性突破,使得IlliacIV 的设计者们在底层硬件以及并行体系结构方面提出的种种改进都大为逊色。
1976 年CRAY-1 问世以后,向量计算机从此牢牢地控制着整个高性能计算机市场15 年。CRAY-1 对所使用的逻辑电路进行了精心的设计,采用了我们如今称为RISC 的精简指令集,还引入了向量寄存器,以完成向量运算。这一系列全新技术手段的使用,使CRAY-1 的主频达到了80MHz。
微处理器随着机器的字长从4 位、8 位、16 位一直增加到32 位,其性能也随之显着提高。正是因为看到了微处理器的这种潜力,卡内基- 梅隆大学开始在当时流行的DECPDP11 小型计算机的基础上研制成功一台由16 个PDP11/40 处理机通过交叉开关与16 个共享存储器模块相连接而成的共享存储多处理器系统C.mmp。
从80 年代开始,微处理器技术一直在高速前进。稍后又出现了非常适合于SMP 方式的总线协议,而伯克利加州大学则对总线协议进行了扩展,提出了Cache 一致性问题的处理方案。从此,C.mmp 开创出的共享存储多处理器之路越走越宽;现在,这种体系结构已经基本上统治了服务器和桌面工作站市场。
同一时期,基于消息传递机制的并行计算机也开始不断涌现。80 年代中期,加州理工成功地将64 个i8086/i8087 处理器通过超立方体互连结构连结起来。此后,便先后出现了Intel iPSC 系列、INMOS Transputer 系列,Intel Paragon 以及IBM SP 的前身Vulcan 等基于消息传递机制的并行计算机。
80 年代末到90 年代初,共享存储器方式的大规模并行计算机又获得了新的发展。IBM将大量早期RISC 微处理器通过蝶形互连网络连结起来。人们开始考虑如何才能在实现共享存储器缓存一致的同时,使系统具有一定的可扩展性(Scalability)。90 年代初期,斯坦福大学提出了DASH 计划,它通过维护一个保存有每一缓存块位置信息的目录结构来实现分布式共享存储器的缓存一致性。后来,IEEE 在此基础上提出了缓存一致性协议的标准。
90 年代以来,主要的几种体系结构开始走向融合。属于数据并行类型的CM-5 除大量采用商品化的微处理器以外,也允许用户层的程序传递一些简单的消息;CRAY T3D是一台NUMA 结构的共享存储型并行计算机,但是它也提供了全局同步机制、消息队列机制,并采取了一些减少消息传递延迟的技术。
随着商品化微处理器、网络设备的发展,以及MPI/PVM 等并行编程标准的发布,机群架构的并行计算机出现。IBM SP2 系列机群系统就是其中的典型代表。在这些系统中,各个节点采用的都是标准的商品化计算机,它们之间通过高速网络连接起来。
今天,越来越多的并行计算机系统采用商品化的微处理器加上商品化的互连网络构造,这种分布存储的并行计算机系统称为机群。国内几乎所有的高性能计算机厂商都生产这种具有极高性能价格比的高性能计算机,并行计算机就进入了一个新的时代,并行计算的应用达到了前所未有的广度和深度。
并行计算机随着微处理芯片的发展,已经进入了一个新时代。目前并行计算机的性能已经突破20PFLOPS,正在向百亿亿次发展。我国并行计算机的研制已经走在世界前列。2003年由联想公司生产的深腾6800 在2003 年11 月世界TOP500 排名中位列第14 名,2004 年曙光公司生产的曙光4000A 在2004 年6 月的世界TOP500 排名中位列第10 名,这是我国公开发布的高性能计算机在世界TOP500 中首次进入前十名,这标志着我国在并行计算机系统的研制和生产中已经赶上了国际先进水平,为提高我国的科学研究水平奠定了物质基础。2013年国际超级计算机大会最新发布的世界超级计算机500强排名中,国防科技大学研制的天河二号超级计算机系统,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首。
从TOP500 的前10 名来看,美国仍然是超级计算机的最大拥有者。按照世界TOP500 的统计数据来分析,美国在计算能力上占有近全世界的一半,在TOP500 中的所有计算机中拥有的数量超过50%。
‘陆’ 如何实现多种目标跟踪算法并行实现对比
本文通过理论和实际的分析,提出一种在以矩不变量为特征的目标跟踪系统中引入并行计算机处理的算法,该算法将目标跟踪过程中的特征提取和模块匹配算法结合起来进行合理划分,使得在每个控制间隔里,两部分交换信息后分别同时计算,从而在任务级上实现并行处理。
‘柒’ 并行算法的并行算法的研究内容
(1) 并行计算模型 并行算法作为一门学科,首先研究的是并行计算模型。并行计算模型是算法设计者与体系结构研究者之间的一个桥梁,是并行算法设计和分析的基础。它屏蔽了并行机之间的差异,从并行机中抽取若干个能反映计算特性的可计算或可测量的参数,并按照模型所定义的计算行为构造成本函数,以此进行算法的复杂度分析。
并行计算模型的第一代是共享存储模型,如SIMD-SM和MIMD-SM的一些计算模型,模型参数主要是CPU的单位计算时间,这样科学家可以忽略一些细节,集中精力设计算法。第二代是分布存储模型。在这个阶段,人们逐渐意识到对并行计算机性能带来影响的不仅仅是CPU,还有通信。因此如何把不同的通信性能抽象成模型参数,是这个阶段的研究重点。第三代是分布共享存储模型,也是我们目前研究所处的阶段。随着网络技术的发展,通信延迟固然还有影响,但对并行带来的影响不再像当年那样重要,注重计算系统的多层次存储特性的影响。
(2) 设计技术并行算法研究的第二部分是并行算法的设计技术。虽然并行算法研究还不是太成熟,但并行算法的设计依然是有章可循的,例如划分法、分治法、平衡树法、倍增法/指针跳跃法、流水线法破对称法等都是常用的设计并行算法的方法。另外人们还可以根据问题的特性来选择适合的设计方法。
(3)并行算法分为多机并行和多线程并行。多机并行,如MPI技术;多线程并行,如OpenMP技术。
以上是并行算法的常规研究内容。
‘捌’ pso的并行算法
与大多数随机优化算法相似,当适应值评价函数的计算量比较大时,PSO算法的计算量会很大。为了解决该问题,研究者提出了并行PSO算法。与并行遗传算法类似,并行PSO算法也可以有三种并行群体模型:主从并行模型、岛屿群体模型和邻接模型。
Schutte采用同步实现方式,在计算完一代中所有点的适应值之后才进入下一代。这种并行方法虽然实现简单,但常常会导致并行效率很差。故而有人提出异步方式的并行算法,可以在对数值精度影响不大的条件下提高PSO算法的并行性能。这两种方式采用的都是主从并行模型,其中异步方式在求解上耦合性更高,更容易产生通信瓶颈。
Baskar提出一种两个子种群并行演化的并发PSO算法,其中一个子种群采用原始的PSO算法,另一个子种群采用基于适应值距离比的PSO算法(FDR-PSO);两个子种群之间频繁地进行信息交换。而El-Abd研究了在子种群中采用局部邻域版本的协作PSO算法,并研究了多种信息交换的方式及其对算法性能的影响。黄芳提出一种基于岛屿群体模型的并行PSO算法,并引入一种集中式迁移策略,提高了求解效率,同时改善了早收敛现象。
Li提出延迟交换信息的并行算法属于邻接模型,该算法可以提高速度,但可能使得解的质量变差。
‘玖’ 求助,多路径并行计算算法
首先,应用的场合和解决的问题不一样。分布式计算比较倾向于在计算寻找模式的东西,穷举暴力之类的计算。分布式的计算被分解后的小任务互相之间有独立性,节点之间的结果几乎不互相影响,实时性要求不高。而并行计算则比较倾向于一些海量数据进...
‘拾’ 计算方法中什么是串行算法与并行算法
如果认为题主所说的并行和串行指的GPU和CPU
CPU核心大量晶体管用于缓存,保证尽快执行每一条指令(不管是什么指令)。
GPU核心大量晶体管用于计算,保证尽量高的指令吞吐量。
可以这样比喻。
CPU=1个理工科博士(没有黑文科博士的意思)
GPU=100个小学生
目前的问题是,要算1万道简单的加减法,肯定是小学生们一起算的快。
但如果要思考相对论,还是让博士来吧。