遗传算法包含
❶ 遗传算法属于数学优化理论吗
遗传算法 (Genetic Algorithm, GA) 是一种基于遗传学原理的优化算法。它是一种模拟自然界中生物进化过程的算法。遗传算则纤法通过模拟遗传进化的过程来解决优化问题,是一种进化塌枣算法。
遗传算法属于数学优化理论的范畴, 数学优团盯拆化理论主要研究的是从数学的角度对优化问题进行研究的理论,包括非线性规划,凸优化,线性规划等。遗传算法就是这一理论的一个重要的分支。
❷ 请问什么是遗传算法,并给两个例子
遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借
用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性
的提高。这一点体现了自然界中"物竞天择、适者生存"进化过程。1962年Holland教授首次
提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方
面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构
和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续
空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。
一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:
(1) 对待解决问题进行编码;
(2) 随机初始化群体X(0):=(x1, x2, … xn);
(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好
坏;
(4) 应用选择算子产生中间代Xr(t);
(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限
个体的覆盖面,体现全局搜索的思想;
(6) t:=t+1;如果不满足终止条件继续(3)。
GA中最常用的算子有如下几种:
(1) 选择算子(selection/reproction): 选择算子从群体中按某一概率成对选择个
体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulett
e wheel)模型。
(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉
,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。
(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对
二值基因链(0,1编码)来说即是取反。
上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的
某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度
及结果有很大的影响,应视具体问题选取不同的值。
GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继
承为我们提供了这一可能。
定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TP
opulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实
例,可以在TSGA类上派生,并定义新的操作。
TPopulation类包含两个重要过程:
FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操
作在用户类中实现。
Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好
个体fmax、最坏个体fmin等。
TSGA类在TPopulation类的基础上派生,以GA的系统参数为构造函数的参数,它有4个
重要的成员函数:
Select: 选择算子,基本的选择策略采用轮盘赌模型(如图2)。轮盘经任意旋转停止
后指针所指向区域被选中,所以fi值大的被选中的概率就大。
Crossover: 交叉算子,以概率Pc在两基因链上的随机位置交换子串。
Mutation: 变异算子,以概率Pm对基因链上每一个基因进行随机干扰(取反)。
Generate: 产生下代,包括了评价、统计、选择、交叉、变异等全部过程,每运行一
次,产生新的一代。
SGA的结构及类定义如下(用C++编写):
[code] typedef char ALLELE; // 基因类型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 个体定义
class TPopulation{ // 群体类定义
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 评价函数
virtual void Statistics(); // 统计函数
};
class TSGA : public TPopulation{ // TSGA类派生于群体类
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 产生新的一代
};
用户GA类定义如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况
也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=
0.6。变异概率太大,会导致不稳定。
参考文献
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陈根社、陈新海,"遗传算法的研究与进展",《信息与控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"采用遗传算法自学习模型控制规则",《自动化理论、技术与应
用》,中国自动化学会 第九届青年学术年会论文集,1993, PP233-238
● 方建安、邵世煌,"采用遗传算法学习的神经网络控制器",《控制与决策》,199
3,8(3), PP208-212
● 苏素珍、土屋喜一,"使用遗传算法的迷宫学习",《机器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
❸ 遗传算法原理简介
遗传算法(Genetic Algorithm, GA)是一种进化计算(Evolutionary Computing)算法,属于人工智能技术的一部分。遗传算法最早是由John Holland和他的学生发明并改进的,源于对达芬奇物种进化理论的模仿。在物种进化过程中,为了适应环境,好的基因得到保留,不好的基因被淘汰,这样经过很多代基因的变化,物种的基因就是当前自然环境下适应度最好的基因。该算法被广泛应用于优化和搜索中,用于寻求最优解(或最优解的近似),其最主要的步骤包括交叉(crossover)和突变(mutation)。
所有的生物体都由细胞组成,每个细胞中都包含了同样的染色体(chromosome)。染色体由一串DNA组成,我们可以简单地把一个生物个体表示为一条染色体。每条染色体上都包含着基因,而基因又是由多个DNA组成的。每个基因都控制着个体某个性状的表达,例如眼睛的颜色、眼皮的单双等。在物种繁衍的过程中,首先发生交叉,来自于父母的染色体经过分裂和重组,形成后代的染色体。之后,后代有一定概率发生基因突变,即染色体上某个位置处的基因以一定概率发生变化。之后,对每一代都重复进行交叉和突变两个步骤。对于每一个后代,我们可以通过一定的方式测量其适应度。适应度越好的个体,在下一次交叉中被选中的概率越大,它的基因越容易传给下一代。这样,后代的适应度就会越来越好,直到收敛到一个稳定值。
在优化问题中,可行解总是有很多个,我们希望寻找一个最优解,它相对于其他可行解来说具有更好的适应度(即目标函数值更大或更小)。每个可行解就是一个“生物个体”,可以表示为状态空间中的一个点和适应度。每个解都是一个经过编码的序列,已二进制编码为例,每个解都是一个二进制序列。这样每个染色体就是一个二进制序列。遗传算法从从一组可行解开始,称为population,从population中随机选择染色体进行交叉产生下一代。这一做法的基于下一代的适应度会好于上一代。遗传算法的过程如下:
终止条件可以是达到了最大迭代次数,或者是前后连续几代的最优染色体的适应度差值小于一个阈值。以上算法描述也许还不够直观,我们举例说明。假设解可以用二进制编码表示,则每个染色体都是一个二进制序列。假设序列长度为16,则每个染色体都是一个16位的二进制序列:
首先,我们随机生成一个population,假设population size为20,则有20个长度为16的二进制序列。计算每个染色体的适应度,然后选取两个染色体进行交叉,如下图所示。下图在第6为上将染色体断开再重组,断开的位置是可以随机选择的。当然,断裂位置也可以不止一个。可以根据具体问题选择具体的交叉方式来提升算法性能。
之后,随机选取后代染色体上某个基因发生基因突变,突变的位置是随机选取的。并且,基因突变并不是在每个后代上都会发生,只是有一定的概率。对于二进制编码,基因突变的方式是按位取反:
上述例子是关于二进制编码的,像求解一元函数在某个区间内的最大最小值就可以使用二进制编码。例如,求解函数f(x)=x+sin(3x)+cos(3x)在区间[0,6]内的最小值。假设我们需要最小值点x保留4位小数,那么求解区间被离散成60000个数。因为2 {15}<60000<2 {16},所以,需要16位二进制数来表示这60000个可能的解。其中0x0000表示0,0x0001表示0.0001,以此类推。针对这个例子,文末给出了demo code.
然而,在排序问题中无法使用二进制编码,应该采用排列编码(permutation encoding)。例如有下面两个染色体:
交叉:随机选取一个交叉点,从该出将两个染色体断开。染色体A的前部分组成后代1的前部分,然后扫描染色体B,如果出现了后代1中不包含的基因,则将其顺序加入后代1中。同理,染色体B的前部分组成了后代2的前部分,扫描染色体A获得后代2的后部分。注意,交叉的方式多种多样,此处只是举出其中一种方式。
( 1 5 3 2 6 | 4 7 9 8) + ( 8 5 6 7 2 | 3 1 4 9) => ( 1 5 3 2 6 8 7 4 9) + ( 8 5 6 7 2 1 3 4 9)
突变:对于一个染色体,随机选中两个基因互换位置。例如第3个基因和倒数第2个基因互换:
(1 5 3 2 6 8 7 4 9) => (1 5 4 2 6 8 7 3 9)
此外还有值编码(value encoding)和树编码(tree encoding)等,具体例子可以参考这个链接: http://obitko.com/tutorials/genetic-algorithms/encoding.php
在实际的遗传算法中,往往会保留上一代中的少数几个精英(elite),即将上一代population中适应度最好的几个染色体加入到后代的poulation中,同时去除后代population中适应度最差的几个染色体。通过这个策略,如果在某次迭代中产生了最优解,则最优解能够一直保留到迭代结束。
用GA求函数最小值的demo code: https://github.com/JiaxYau/GA_test
参考资料 :
[1] Introction to Genetic Algorithm, http://obitko.com/tutorials/genetic-algorithms/index.php
[2] Holland J H. Adaption in natural and artificial systems