hbase算法
A. 淘宝为什么使用HBase及如何优化的
1 前言
hbase是从hadoop中 分离出来的apache顶级开源项目。由于它很好地用java实现了google的bigtable系统大部分特性,因此在数据量猛增的今天非常受到欢 迎。对于淘宝而言,随着市场规模的扩大,产品与技术的发展,业务数据量越来越大,对海量数据的高效插入和读取变得越来越重要。由于淘宝拥有也许是国内最大 的单一hadoop集群(云梯),因此对hadoop系列的产品有比较深入的了解,也就自然希望使用hbase来做这样一种海量数据读写服务。本篇文章将 对淘宝最近一年来在online应用上使用和优化hbase的情况做一次小结。
2 原因
为什么要使用hbase?
淘宝在2011年之前所有的后端持久化存储基本上都是在mysql上进行的(不排除少量oracle/bdb/tair/mongdb等),mysql由于开源,并且生态系统良好,本身拥有分库分表等多种解决方案,因此很长一段时间内都满足淘宝大量业务的需求。
但是由于业务的多样化发展,有越来越多的业务系统的需求开始发生了变化。一般来说有以下几类变化:
a) 数据量变得越来越多,事实上现在淘宝几乎任何一个与用户相关的在线业务的数据量都在亿级别,每日系统调用次数从亿到百亿都有,且历史数据不能轻易删除。这需要有一个海量分布式文件系统,能对TB级甚至PB级别的数据提供在线服务
b) 数据量的增长很快且不一定能准确预计,大多数应用系统从上线起在一段时间内数据量都呈很快的上升趋势,因此从成本的角度考虑对系统水平扩展能力有比较强烈的需求,且不希望存在单点制约
c) 只需要简单的kv读取,没有复杂的join等需求。但对系统的并发能力以及吞吐量、响应延时有非常高的需求,并且希望系统能够保持强一致性
d) 通常系统的写入非常频繁,尤其是大量系统依赖于实时的日志分析
e) 希望能够快速读取批量数据
f ) schema灵活多变,可能经常更新列属性或新增列
g) 希望能够方便使用,有良好且语义清晰的java接口
以上需求综合在一起,我们认为hbase是一种比较适合的选择。首先它的数据由hdfs天然地做了数据冗余,云梯三年的稳定运行,数据100%可靠 己经证明了hdfs集群的安全性,以及服务于海量数据的能力。其次hbase本身的数据读写服务没有单点的限制,服务能力可以随服务器的增长而线性增长, 达到几十上百台的规模。LSM-Tree模式的设计让hbase的写入性能非常良好,单次写入通常在1-3ms内即可响应完成,且性能不随数据量的增长而 下降。
region(相当于数据库的分表)可以ms级动态的切分和移动,保证了负载均衡性。由于hbase上的数据模型是按rowkey排序存储的,而读 取时会一次读取连续的整块数据做为cache,因此良好的rowkey设计可以让批量读取变得十分容易,甚至只需要1次io就能获取几十上百条用户想要的 数据。最后,淘宝大部分工程师是java背景的同学,因此hbase的api对于他们来说非常容易上手,培训成本相对较低。
当然也必须指出,在大数据量的背景下银弹是不存在的,hbase本身也有不适合的场景。比如,索引只支持主索引(或看成主组合索引),又比如服务是 单点的,单台机器宕机后在master恢复它期间它所负责的部分数据将无法服务等。这就要求在选型上需要对自己的应用系统有足够了解。
3 应用情况
我们从2011年3月开始研究hbase如何用于在线服务。尽管之前在一淘搜索中己经有了几十节点的离线服务。这是因为hbase早期版本的目标就 是一个海量数据中的离线服务。2009年9月发布的0.20.0版本是一个里程碑,online应用正式成为了hbase的目标,为此hbase引入了 zookeeper来做为backupmaster以及regionserver的管理。2011年1月0.90.0版本是另一个里程碑,基本上我们今天 看到的各大网站,如facebook/ebay/yahoo内所使用于生产的hbase都是基于这一个版本(fb所采用的0.89版本结构与0.90.x 相近)。bloomfilter等诸多属性加入了进来,性能也有极大提升。基于此,淘宝也选用了0.90.x分支作为线上版本的基础。
第一个上线的应用是数据魔方中的prom。prom原先是基于redis构建的,因为数据量持续增大以及需求的变化,因此我们用hbase重构了它 的存储层。准确的说prom更适合0.92版本的hbase,因为它不仅需要高速的在线读写,更需要count/group by等复杂应用。但由于当时0.92版本尚未成熟,因此我们自己单独实现了coprocessor。prom的数据导入是来源于云梯,因此我们每天晚上花 半个小时将数据从云梯上写入hbase所在的hdfs,然后在web层做了一个client转发。经过一个月的数据比对,确认了速度比之redis并未有 明显下降,以及数据的准确性,因此得以顺利上线。
第二个上线的应用是TimeTunnel,TimeTunnel是一个高效的、可靠的、可扩展的实时数据传输平台,广泛应用于实时日志收集、数据实 时监控、广告效果实时反馈、数据库实时同步等领域。它与prom相比的特点是增加了在线写。动态的数据增加使hbase上compact/balance /split/recovery等诸多特性受到了极大的挑战。TT的写入量大约一天20TB,读的量约为此的1.5倍,我们为此准备了20台 regionserver的集群,当然底层的hdfs是公用的,数量更为庞大(下文会提到)。每天TT会为不同的业务在hbase上建不同的表,然后往该 表上写入数据,即使我们将region的大小上限设为1GB,最大的几个业务也会达到数千个region这样的规模,可以说每一分钟都会有数次 split。在TT的上线过程中,我们修复了hbase很多关于split方面的bug,有好几个commit到了hbase社区,同时也将社区一些最新 的patch打在了我们的版本上。split相关的bug应该说是hbase中会导致数据丢失最大的风险之一,这一点对于每个想使用hbase的开发者来 说必须牢记。hbase由于采用了LSM-Tree模型,从架构原理上来说数据几乎没有丢失的可能,但是在实际使用中不小心谨慎就有丢失风险。原因后面会 单独强调。TT在预发过程中我们分别因为Meta表损坏以及split方面的bug曾经丢失过数据,因此也单独写了meta表恢复工具,确保今后不发生类 似问题(hbase-0.90.5以后的版本都增加了类似工具)。另外,由于我们存放TT的机房并不稳定,发生过很多次宕机事故,甚至发生过假死现象。因 此我们也着手修改了一些patch,以提高宕机恢复时间,以及增强了监控的强度。
CTU以及会员中心项目是两个对在线要求比较高的项目,在这两个项目中我们特别对hbase的慢响应问题进行了研究。hbase的慢响应现在一般归 纳为四类原因:网络原因、gc问题、命中率以及client的反序列化问题。我们现在对它们做了一些解决方案(后面会有介绍),以更好地对慢响应有控制 力。
和Facebook类似,我们也使用了hbase做为实时计算类项目的存储层。目前对内部己经上线了部分实时项目,比如实时页面点击系 统,galaxy实时交易推荐以及直播间等内部项目,用户则是散布到公司内各部门的运营小二们。与facebook的puma不同的是淘宝使用了多种方式 做实时计算层,比如galaxy是使用类似affa的actor模式处理交易数据,同时关联商品表等维度表计算排行(TopN),而实时页面点击系统则是 基于twitter开源的storm进行开发,后台通过TT获取实时的日志数据,计算流将中间结果以及动态维表持久化到hbase上,比如我们将 rowkey设计为url+userid,并读出实时的数据,从而实现实时计算各个维度上的uv。
最后要特别提一下历史交易订单项目。这个项目实际上也是一个重构项目,目的是从以前的solr+bdb的方案上迁移到hbase上来。由于它关系到 己买到页面,用户使用频率非常高,重要程度接近核心应用,对数据丢失以及服务中断是零容忍。它对compact做了优化,避免大数据量的compact在 服务时间内发生。新增了定制的filter来实现分页查询,rowkey上对应用进行了巧妙的设计以避免了冗余数据的传输以及90%以上的读转化成了顺序 读。目前该集群存储了超过百亿的订单数据以及数千亿的索引数据,线上故障率为0。
随着业务的发展,目前我们定制的hbase集群己经应用到了线上超过二十个应用,数百台服务器上。包括淘宝首页的商品实时推荐、广泛用于卖家的实时量子统计等应用,并且还有继续增多以及向核心应用靠近的趋势。
4 部署、运维和监控
Facebook之前曾经透露过Facebook的hbase架构,可以说是非常不错的。如他们将message服务的hbase集群按用户分为数 个集群,每个集群100台服务器,拥有一台namenode以及分为5个机架,每个机架上一台zookeeper。可以说对于大数据量的服务这是一种优良 的架构。对于淘宝来说,由于数据量远没有那么大,应用也没有那么核心,因此我们采用公用hdfs以及zookeeper集群的架构。每个hdfs集群尽量 不超过100台规模(这是为了尽量限制namenode单点问题)。在其上架设数个hbase集群,每个集群一个master以及一个 backupmaster。公用hdfs的好处是可以尽量减少compact的影响,以及均摊掉硬盘的成本,因为总有集群对磁盘空间要求高,也总有集群对 磁盘空间要求低,混合在一起用从成本上是比较合算的。zookeeper集群公用,每个hbase集群在zk上分属不同的根节点。通过zk的权限机制来保 证hbase集群的相互独立。zk的公用原因则仅仅是为了运维方便。
由于是在线应用,运维和监控就变得更加重要,由于之前的经验接近0,因此很难招到专门的hbase运维人员。我们的开发团队和运维团队从一开始就很重视该问题,很早就开始自行培养。以下讲一些我们的运维和监控经验。
我们定制的hbase很重要的一部分功能就是增加监控。hbase本身可以发送ganglia监控数据,只是监控项远远不够,并且ganglia的 展示方式并不直观和突出。因此一方面我们在代码中侵入式地增加了很多监控点,比如compact/split/balance/flush队列以及各个阶 段的耗时、读写各个阶段的响应时间、读写次数、region的open/close,以及具体到表和region级别的读写次数等等。仍然将它们通过 socket的方式发送到ganglia中,ganglia会把它们记录到rrd文件中,rrd文件的特点是历史数据的精度会越来越低,因此我们自己编写 程序从rrd中读出相应的数据并持久化到其它地方,然后自己用js实现了一套监控界面,将我们关心的数据以趋势图、饼图等各种方式重点汇总和显示出来,并 且可以无精度损失地查看任意历史数据。在显示的同时会把部分非常重要的数据,如读写次数、响应时间等写入数据库,实现波动报警等自定义的报警。经过以上措 施,保证了我们总是能先于用户发现集群的问题并及时修复。我们利用redis高效的排序算法实时地将每个region的读写次数进行排序,能够在高负载的 情况下找到具体请求次数排名较高的那些region,并把它们移到空闲的regionserver上去。在高峰期我们能对上百台机器的数十万个 region进行实时排序。
为了隔离应用的影响,我们在代码层面实现了可以检查不同client过来的连接,并且切断某些client的连接,以在发生故障时,将故障隔离在某个应用内部而不扩大化。maprece的应用也会控制在低峰期运行,比如在白天我们会关闭jobtracker等。
此外,为了保障服务从结果上的可用,我们也会定期跑读写测试、建表测试、hbck等命令。hbck是一个非常有用的工具,不过要注意它也是一个很重 的工操作,因此尽量减少hbck的调用次数,尽量不要并行运行hbck服务。在0.90.4以前的hbck会有一些机率使hbase宕机。另外为了确保 hdfs的安全性,需要定期运行fsck等以检查hdfs的状态,如block的replica数量等。
我们会每天根踪所有线上服务器的日志,将错误日志全部找出来并且邮件给开发人员,以查明每一次error以上的问题原因和fix。直至错误降低为0。另外 每一次的hbck结果如果有问题也会邮件给开发人员以处理掉。尽管并不是每一次error都会引发问题,甚至大部分error都只是分布式系统中的正常现 象,但明白它们问题的原因是非常重要的。
5 测试与发布
因为是未知的系统,我们从一开始就非常注重测试。测试从一开始就分为性能测试和功能测试。性能测试主要是注意基准测试,分很多场景,比如不同混合读 写比例,不同k/v大小,不同列族数,不同命中率,是否做presharding等等。每次运行都会持续数小时以得到准确的结果。因此我们写了一套自动化 系统,从web上选择不同的场景,后台会自动将测试参数传到各台服务器上去执行。由于是测试分布式系统,因此client也必须是分布式的。
我们判断测试是否准确的依据是同一个场景跑多次,是否数据,以及运行曲线达到99%以上的重合度,这个工作非常烦琐,以至于消耗了很多时间,但后来 的事实证明它非常有意义。因为我们对它建立了100%的信任,这非常重要,比如后期我们的改进哪怕只提高2%的性能也能被准确捕捉到,又比如某次代码修改 使compact队列曲线有了一些起伏而被我们看到,从而找出了程序的bug,等等。
功能测试上则主要是接口测试和异常测试。接口测试一般作用不是很明显,因为hbase本身的单元测试己经使这部分被覆盖到了。但异常测试非常重要, 我们绝大部分bug修改都是在异常测试中发现的,这帮助我们去掉了很多生产环境中可能存在的不稳定因素,我们也提交了十几个相应的patch到社区,并受 到了重视和commit。分布式系统设计的难点和复杂度都在异常处理上,我们必须认为系统在通讯的任何时候都是不可靠的。某些难以复现的问题我们会通过查 看代码大体定位到问题以后,在代码层面强行抛出异常来复现它。事实证明这非常有用。
为了方便和快速定位问题,我们设计了一套日志收集和处理的程序,以方便地从每台服务器上抓取相应的日志并按一定规律汇总。这非常重要,避免浪费大量的时间到登录不同的服务器以寻找一个bug的线索。
由于hbase社区在不停发展,以及线上或测试环境发现的新的bug,我们需要制定一套有规律的发布模式。它既要避免频繁的发布引起的不稳定,又要 避免长期不发布导致生产版本离开发版本越来越远或是隐藏的bug爆发。我们强行规定每两周从内部trunk上release一个版本,该版本必须通过所有 的测试包括回归测试,并且在release后在一个小型的集群上24小时不受甘扰不停地运行。每个月会有一次发布,发布时采用最新release的版本, 并且将现有的集群按重要性分级发布,以确保重要应用不受新版本的潜在bug影响。事实证明自从我们引入这套发布机制后,由发布带来的不稳定因素大大下降 了,并且线上版本也能保持不落后太多。
6 改进和优化
Facebook是一家非常值得尊敬的公司,他们毫无保留地对外公布了对hbase的所有改造,并且将他们内部实际使用的版本开源到了社区。 facebook线上应用的一个重要特点是他们关闭了split,以降低split带来的风险。与facebook不同,淘宝的业务数据量相对没有如此庞 大,并且由于应用类型非常丰富,我们并们并没有要求用户强行选择关闭split,而是尽量去修改split中可能存在的bug。到目前为止,虽然我们并不 能说完全解决了这个问题,但是从0.90.2中暴露出来的诸多跟split以及宕机相关的可能引发的bug我们的测试环境上己经被修复到接近了0,也为社 区提交了10数个稳定性相关的patch,比较重要的有以下几个:
https://issues.apache.org/jira/browse/HBASE-4562
https://issues.apache.org/jira/browse/HBASE-4563
https://issues.apache.org/jira/browse/HBASE-5152
https://issues.apache.org/jira/browse/HBASE-5100
https://issues.apache.org/jira/browse/HBASE-4880
https://issues.apache.org/jira/browse/HBASE-4878
https://issues.apache.org/jira/browse/HBASE-4899
还有其它一些,我们主要将patch提交到0.92版本,社区会有commitor帮助我们backport回0.90版本。所以社区从 0.90.2一直到0.90.6一共发布了5个bugfix版本后,0.90.6版本其实己经比较稳定了。建议生产环境可以考虑这个版本。
split这是一个很重的事务,它有一个严重的问题就是会修改meta表(当然宕机恢复时也有这个问题)。如果在此期间发生异常,很有可能meta 表、rs内存、master内存以及hdfs上的文件会发生不一致,导致之后region重新分配时发生错误。其中一个错误就是有可能同一个region 被两个以上的regionserver所服务,那么就可能出现这一个region所服务的数据会随机分别写到多台rs上,读取的时候也会分别读取,导致数 据丢失。想要恢复原状,必须删除掉其中一个rs上的region,这就导致了不得不主动删掉数据,从而引发数据丢失。
前面说到慢响应的问题归纳为网络原因、gc问题、命中率以及client的反序列化问题。网络原因一般是网络不稳定引起的,不过也有可能是tcp参 数设置问题,必须保证尽量减少包的延迟,如nodelay需要设置为true等,这些问题我们通过tcpmp等一系列工具专门定位过,证明tcp参数 对包的组装确实会造成慢连接。gc要根据应用的类型来,一般在读比较多的应用中新生代不能设置得太小。命中率极大影响了响应的时间,我们会尽量将 version数设为1以增加缓存的容量,良好的balance也能帮助充分应用好每台机器的命中率。我们为此设计了表级别的balance。
由于hbase服务是单点的,即宕机一台,则该台机器所服务的数据在恢复前是无法读写的。宕机恢复速度决定了我们服务的可用率。为此主要做了几点优 化。首先是将zk的宕机发现时间尽量缩短到1分钟,其次改进了master恢复日志为并行恢复,大大提高了master恢复日志的速度,然后我们修改了 openhandler中可能出现的一些超时异常,以及死锁,去掉了日志中可能发生的open…too long等异常。原生的hbase在宕机恢复时有可能发生10几分钟甚至半小时无法重启的问题己经被修复掉了。另外,hdfs层面我们将 socket.timeout时间以及重试时间也缩短了,以降低datanode宕机引起的长时间block现象。
hbase本身读写层面的优化我们目前并没有做太多的工作,唯一打的patch是region增加时写性能严重下降的问题。因为由于hbase本身 良好的性能,我们通过大量测试找到了各种应用场景中比较优良的参数并应用于生产环境后,都基本满足需求。不过这是我们接下来的重要工作。
7 将来计划
我们目前维护着淘宝内基于社区0.90.x而定制的hbase版本。接下来除继续fix它的bug外,会维护基于0.92.x修改的版本。之所以这 样,是因为0.92.x和0.90.x的兼容性并不是非常好,而且0.92.x修改掉的代码非常多,粗略统计会超过30%。0.92中有我们非常看重的一 些特性。
0.92版本改进了hfile为hfileV2,v2版本的特点是将索引以及bloomfilter进行了大幅改造,以支持单个大hfile文 件。现有的HFile在文件大到一定程度时,index会占用大量的内存,并且加载文件的速度会因此下降非常多。而如果HFile不增大的 话,region就无法扩大,从而导致region数量非常多。这是我们想尽量避免的事。
0.92版本改进了通讯层协议,在通讯层中增加了length,这非常重要,它让我们可以写出nio的客户端,使反序列化不再成为影响client性能的地方。
0.92版本增加了coprocessor特性,这支持了少量想要在rs上进行count等的应用。
还有其它很多优化,比如改进了balance算法、改进了compact算法、改进了scan算法、compact变为CF级别、动态做ddl等等特性。
除了0.92版本外,0.94版本以及最新的trunk(0.96)也有很多不错的特性,0.94是一个性能优化版本。它做了很多革命性工作,比如去掉root表,比如HLog进行压缩,replication上支持多个slave集群,等等。
我们自己也有一些优化,比如自行实现的二级索引、backup策略等都会在内部版本上实现。
另外值得一提的是hdfs层面的优化也非常重要,hadoop-1.0.0以及cloudera-3u3的改进对hbase非常有帮助,比如本地化 读、checksum的改进、datanode的keepalive设置、namenode的HA策略等。我们有一支优秀的hdfs团队来支持我们的 hdfs层面工作,比如定位以及fix一些hdfs层面的bug,帮助提供一些hdfs上参数的建议,以及帮助实现namenode的HA等。最新的测试 表明,3u3的checksum+本地化读可以将随机读性能提升至少一倍。
我们正在做的一件有意义的事是实时监控和调整regionserver的负载,能够动态地将负载不足的集群上的服务器挪到负载较高的集群中,而整个过程对用户完全透明。
总的来说,我们的策略是尽量和社区合作,以推动hbase在整个apache生态链以及业界的发展,使其能更稳定地部署到更多的应用中去,以降低使用门槛以及使用成本。
B. hbase与关系型数据库的存储方式有哪些不同
HBase与传统关系数据库的区别主要体现在以下几个方面:1.数据类型。关系数据库采用关系模型,具有丰富的数据类型和储存方式。HBase则采用了更加简单的数据模型,它把数据储存为未经解释的字符串,用户可以把不同格式的结构化数据和非结构化数据都序列化成字符串保存到HBase中,用户需要自己编写程序把字符串解析成不同的数据类型。 2.数据操作。关系数据库中包含了丰富的操作,如插入、删除、更新、查询等,其中会涉及复杂的多表连接,通常是借助多个表之间的主外键关联来实现的。HBase操作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表与表之。
列存储不同于传统的关系型数据库,其数据在表中是按行存储的,列方式所带来的重要好处之一就是,由于查询中的选择规则是通过列来定义的,因此整个数据库是自动索引化的。
按列存储每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量,一个字段的数据聚集存储,那就更容易为这种聚集存储设计更好的压缩/解压算法。
传统的(Oracle)行存储和(Hbase)列存储的区别。
主要体现在以下几个方面:1.数据类型。关系数据库采用关系模型,具有丰富的数据类型和储存方式。HBase则采用了更加简单的数据模型,它把数据储存为未经解释的字符串,用户可以把不同格式的结构化数据和非结构化数据都序列化成字符串保存到HBase中,用户需要自己编写程序把字符串解析成不同的数据类型。 2.数据操作。关系数据库中包含了丰富的操作,如插入、删除、更新、查询等,其中会涉及复杂的多表连接,通常是借助多个表之间的主外键关联来实现的。HBase操作则不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等,因为HBase在设计上就避免了复杂的表与表之间的关系,通常只采用单表的主键查询。
C. HBase 写性能优化
上一篇文章主要介绍了HBase读性能优化的基本套路,本篇文章来说道说道如何诊断HBase写数据的异常问题以及优化写性能。和读相比,HBase写数据流程倒是显得很简单:数据先顺序写入HLog,再写入对应的缓存Memstore,当Memstore中数据大小达到一定阈值(128M)之后,系统会异步将Memstore中数据flush到HDFS形成小文件。
HBase数据写入通常会遇到两类问题,一类是写性能较差,另一类是数据根本写不进去。这两类问题的切入点也不尽相同,如下图所示:
优化原理:数据写入流程可以理解为一次顺序写WAL+一次写缓存,通常情况下写缓存延迟很低,因此提升写性能就只能从WAL入手。WAL机制一方面是为了确保数据即使写入缓存丢失也可以恢复,另一方面是为了集群之间异步复制。默认WAL机制开启且使用同步机制写入WAL。首先考虑业务是否需要写WAL,通常情况下大多数业务都会开启WAL机制(默认),但是对于部分业务可能并不特别关心异常情况下部分数据的丢失,而更关心数据写入吞吐量,比如某些推荐业务,这类业务即使丢失一部分用户行为数据可能对推荐结果并不构成很大影响,但是对于写入吞吐量要求很高,不能造成数据队列阻塞。这种场景下可以考虑关闭WAL写入,写入吞吐量可以提升2x~3x。退而求其次,有些业务不能接受不写WAL,但可以接受WAL异步写入,也是可以考虑优化的,通常也会带来1x~2x的性能提升。
优化推荐:根据业务关注点在WAL机制与写入吞吐量之间做出选择
其他注意点:对于使用Increment操作的业务,WAL可以设置关闭,也可以设置异步写入,方法同Put类似。相信大多数Increment操作业务对WAL可能都不是那么敏感~
优化原理:HBase分别提供了单条put以及批量put的API接口,使用批量put接口可以减少客户端到RegionServer之间的RPC连接数,提高写入性能。另外需要注意的是,批量put请求要么全部成功返回,要么抛出异常。
优化建议:使用批量put进行写入请求
优化原理:业务如果可以接受异常情况下少量数据丢失的话,还可以使用异步批量提交的方式提交请求。提交分为两阶段执行:用户提交写请求之后,数据会写入客户端缓存,并返回用户写入成功;当客户端缓存达到阈值(默认2M)之后批量提交给RegionServer。需要注意的是,在某些情况下客户端异常的情况下缓存数据有可能丢失。
优化建议:在业务可以接受的情况下开启异步批量提交
使用方式:setAutoFlush(false)
优化原理:当前集群中表的Region个数如果小于RegionServer个数,即Num(Region of Table) < Num(RegionServer),可以考虑切分Region并尽可能分布到不同RegionServer来提高系统请求并发度,如果Num(Region of Table) > Num(RegionServer),再增加Region个数效果并不明显。
优化建议:在Num(Region of Table) < Num(RegionServer)的场景下切分部分请求负载高的Region并迁移到其他RegionServer;
优化原理:另一个需要考虑的问题是写入请求是否均衡,如果不均衡,一方面会导致系统并发度较低,另一方面也有可能造成部分节点负载很高,进而影响其他业务。分布式系统中特别害怕一个节点负载很高的情况,一个节点负载很高可能会拖慢整个集群,这是因为很多业务会使用Mutli批量提交读写请求,一旦其中一部分请求落到该节点无法得到及时响应,就会导致整个批量请求超时。因此不怕节点宕掉,就怕节点奄奄一息!
优化建议:检查RowKey设计以及预分区策略,保证写入请求均衡。
KeyValue大小对写入性能的影响巨大,一旦遇到写入性能比较差的情况,需要考虑是否由于写入KeyValue数据太大导致。KeyValue大小对写入性能影响曲线图如下:
图中横坐标是写入的一行数据(每行数据10列)大小,左纵坐标是写入吞吐量,右坐标是写入平均延迟(ms)。可以看出随着单行数据大小不断变大,写入吞吐量急剧下降,写入延迟在100K之后急剧增大。
说到这里,有必要和大家分享两起在生产线环境因为业务KeyValue较大导致的严重问题,一起是因为大字段业务写入导致其他业务吞吐量急剧下降,另一起是因为大字段业务scan导致RegionServer宕机。
案件一:大字段写入导致其他业务吞吐量急剧下降
部分业务反馈集群写入忽然变慢、数据开始堆积的情况,查看集群表级别的数据读写QPS监控,发现问题的第一个关键点:业务A开始写入之后整个集群其他部分业务写入QPS都几乎断崖式下跌,初步怀疑黑手就是业务A。
下图是当时业务A的写入QPS(事后发现脑残忘了截取其他表QPS断崖式下跌的惨象),但是第一感觉是QPS并不高啊,凭什么去影响别人!
于是就继续查看其他监控信息,首先确认系统资源(主要是IO)并没有到达瓶颈,其次确认了写入的均衡性,直至看到下图,才追踪到影响其他业务写入的第二个关键点:RegionServer的handler(配置150)被残暴耗尽:
对比上面两张图,是不是发现出奇的一致,那就可以基本确认是由于该业务写入导致这台RegionServer的handler被耗尽,进而其他业务拿不到handler,自然写不进去。那问题来了,为什么会这样?正常情况下handler在处理完客户端请求之后会立马释放,唯一的解释是这些请求的延迟实在太大。
试想,我们去汉堡店排队买汉堡,有150个窗口服务,正常情况下大家买一个很快,这样150个窗口可能只需要50个服务。假设忽然来了一批大汉,要定制超大汉堡,好了,所有的窗口都工作起来,而且因为大汉堡不好制作导致服务很慢,这样必然会导致其他排队的用户长时间等待,直至超时。
可回头一想这可是写请求啊,怎么会有这么大的请求延迟!和业务方沟通之后确认该表主要存储语料库文档信息,都是平均100K左右的数据,是不是已经猜到了结果,没错,就是因为这个业务KeyValue太大导致。KeyValue太大会导致HLog文件写入频繁切换、flush以及compaction频繁触发,写入性能急剧下降。
目前针对这种较大KeyValue写入性能较差的问题还没有直接的解决方案,好在社区已经意识到这个问题,在接下来即将发布的下一个大版本HBase 2.0.0版本会针对该问题进行深入优化,详见 HBase MOB ,优化后用户使用HBase存储文档、图片等二进制数据都会有极佳的性能体验。
案件二:大字段scan导致RegionServer宕机
案件现场:有段时间有个0.98集群的RegionServer经常频繁宕机,查看日志是由于”java.lang.OutOfMemoryError: Requested array size exceeds VM limit”,如下图所示:
原因分析:通过查看源码以及相关文档,确认该异常发生在scan结果数据回传给客户端时由于数据量太大导致申请的array大小超过JVM规定的最大值( Interge.Max_Value-2)。造成该异常的两种最常见原因分别是:
有的童鞋就要提问啦,说如果已经对返回结果大小做了限制,在表列太宽的情况下是不是就可以不对列数量做限制呢。这里需要澄清一下,如果不对列数据做限制,数据总是一行一行返回的,即使一行数据大小大于设置的返回结果限制大小,也会返回完整的一行数据。在这种情况下,如果这一行数据已经超过array大小阈值,也会触发OOM异常。
解决方案:目前针对该异常有两种解决方案,其一是升级集群到1.0,问题都解决了。其二是要求客户端访问的时候对返回结果大小做限制(scan.setMaxResultSize(2 1024 1024))、并且对列数量做限制(scan.setBatch(100)),当然,0.98.13版本以后也可以对返回结果大小在服务器端进行限制,设置参数hbase.server.scanner.max.result.size即可
上述几点主要针对写性能优化进行了介绍,除此之外,在一些情况下还会出现写异常,一旦发生需要考虑下面两种情况(GC引起的不做介绍):
问题解析:以RegionServer级别flush进行解析,HBase设定一旦整个RegionServer上所有Memstore占用内存大小总和大于配置文件中upperlimit时,系统就会执行RegionServer级别flush,flush算法会首先按照Region大小进行排序,再按照该顺序依次进行flush,直至总Memstore大小低至lowerlimit。这种flush通常会block较长时间,在日志中会发现“Memstore is above high water mark and block 7452 ms”,表示这次flush将会阻塞7s左右。
问题检查点:
问题解析:对于数据写入很快的集群,还需要特别关注一个参数:hbase.hstore.blockingStoreFiles,此参数表示如果当前hstore中文件数大于该值,系统将会强制执行compaction操作进行文件合并,合并的过程会阻塞整个hstore的写入。通常情况下该场景发生在数据写入很快的情况下,在日志中可以发现”Waited 3722ms on a compaction to clean up ‘too many store files“
问题检查点:
上文已经从写性能优化以及写异常诊断两个方面对HBase中数据写入可能的问题进行了详细的解释,相信在0.98版本的基础上对写入来说已经是最好的解决方案了。但是有些业务可能依然觉得不够快,毕竟”更快”是所有存储系统活着的动力,那还有提高空间吗?当然,接下来简单介绍HBase之后版本对写性能优化的两点核心改进:
这个特性意味着可以将WAL单独置于SSD上,这样即使在默认情况下(WALSync),写性能也会有很大的提升。需要注意的是,该特性建立在HDFS 2.6.0+的基础上,HDFS以前版本不支持该特性。具体可以参考官方jira: https://issues.apache.org/jira/browse/HBASE-12848
该特性也是对WAL进行改造,当前WAL设计为一个RegionServer上所有Region共享一个WAL,可以想象在写入吞吐量较高的时候必然存在资源竞争,降低整体性能。针对这个问题,社区小伙伴(阿里巴巴大神)提出Multiple WALs机制,管理员可以为每个Namespace下的所有表设置一个共享WAL,通过这种方式,写性能大约可以提升20%~40%左右。具体可以参考官方jira: https://issues.apache.org/jira/browse/HBASE-14457