遗传算法的matlab代码
㈠ 遗传算法求解超越方程,matlab程序,tanx=1/x, x∈[0,60],需要程序代码
主程序代码如下饥姿。主文件其它代码及调用的其它函数详见私信压缩包。
for n=0:19;
x=linspace(0,60);
y1=tan(x);
y2=1./x;
figure(1);
plot(x,y1,'r',x,y2,'b')
title('函数曲线图')
xlabel('x')
ylabel('y')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%主程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global BitLength %全局变量,计算如果满足求解精度至少需要编码的长度
global boundsbegin %全局变量,自变量的起始点
global boundsend %全局变量,自变量的终止点
bounds=[pi/2*2*n pi/2*(2*n+1)]; %一维自变量的取值范围棚猛
precision=0.0001; %运算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体
BitLength=ceil(log2((boundsend-boundsbegin)' ./ precision));
popsize=60; %初始种群大小
Generationnmax=50; %最大代数
pcrossover=0.9999; %交配概率
pmutation=0.0001; %变异概率
population=round(rand(popsize,BitLength)); %初始种群,行代表一个个体,列代表不同个体
%计算适应度
[Fitvalue,cumsump]=fitnessfun(population); %输入群体population,返回适应度Fitvalue和累积概率cumsump
Generation=1;
while Generation<(Generationnmax+1)
for j=1:2:popsize %1对1对的群体进行如下操作(交叉,变异)
%选择
seln=selection(population,cumsump);
%交叉
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%变异
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end
%产生了新的种群
population=smnew;
%计算新种群的适应度
[Fitvalue,cumsump]=fitnessfun(population); %记录当前代最好的适应度和平均适应度
[fmax,nmax]=max(Fitvalue); %最好的适应度为fmax(即函数值最大),其对应的个体为nmax
fmean=mean(Fitvalue); %平均适应度为fmean
ymax(Generation)=fmax; %每代中最好的适应度
ymean(Generation)=fmean; %每代中的平均链肢桥适应度
%记录当前代的最佳染色体个体
x=transform2to10(population(nmax,:));%population(nmax,:)为最佳染色体个体
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;%Generation加1、减1的操作是为了能记录各代中的最佳函数值xmax(Generation)
targetfunvalue=targetfun(xmax);
[Besttargetfunvalue,nmax]=max(targetfunvalue);
Bestpopulation=xmax(nmax)
%绘制经过遗传运算后的适应度曲线
figure(2);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1,'marker','*','markersize',8)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','k','linestyle','-','linewidth',1, 'marker','h','markersize',8)
xlabel('进化代数');
ylabel('最大和平均适应度');
xlim([1 Generationnmax]);
legend('最大适应度','平均适应度');
box off;
hold off;
end
%%%%%%%%%%%计算适应度函数%%%%%%%%%%%%%%%%%%%%%%%%
[Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1); %计算个体个数
for i=1:popsize
x=transform2to10(population(i,:)); %将二进制转换为十进制
%转化为[-2,2]区间的实数
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx); %计算函数值,即适应度
end
%给适应度函数加上一个大小合理的数以便保证种群适应值为正数
Fitvalue=Fitvalue'+230; %该处还有一个作用就是决定适应度是有利于选取几个有利个体(加强竞争),海深减弱竞争
%计算选择概率
fsum=sum(Fitvalue) ;
Pperpopulation=Fitvalue/fsum ; %适应度归一化,及被复制的概率
%计算累积概率
cumsump(1)=Pperpopulation(1) ;
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i); %求累计概率
end
cumsump=cumsump' ; %累计概率
㈡ matlab 遗传算法
function m_main()
clear
clc
Max_gen=100;% 运行代数
pop_size=100;%种群大小
chromsome=10;%染色体的长度
pc=0.9;%交叉概率
pm=0.25;%变异概率
gen=0;%统计代数
%初始化
init=40*rand(pop_size,chromsome)-20;
pop=init;
fit=obj_fitness(pop);
[max_fit,index_max]=max(fit);maxfit=max_fit;
[min_fit,index_min]=min(fit);best_indiv=pop(index_max,:);
%迭代操作
while gen<Max_gen
gen=gen+1; bt(gen)=max_fit;
if maxfit<max_fit;maxfit=max_fit;pop(index_min,:)=pop(index_max,:);best_indiv=pop(index_max,:);end
best_indiv_tmp(gen)=pop(index_max);
newpop=ga(pop,pc,pm,chromsome,fit);
fit=obj_fitness(newpop);
[max_fit,index_max]=max(fit);
[min_fit,index_min]=min(fit);
pop=newpop;
trace(1,gen)=max_fit;
trace(2,gen)=sum(fit)./length(fit);
end
%运行结果
[f_max gen_ct]=max(bt)%求的最大值以及代数
maxfit
best_indiv
%画图
% bt
hold on
plot(trace(1,:),'.g:');
plot( trace(2,:),'.r-');
title('实验结果图')
xlabel('迭代次数/代'),ylabel('最佳适应度(最大值)');%坐标标注
plot(gen_ct-1,0:0.1:f_max+1,'c-');%画出最大值
text(gen_ct,f_max+1, '最大值')
hold off
function [fitness]=obj_fitness(pop)
%适应度计算函数
[r c]=size(pop);
x=pop;
fitness=zeros(r,1);
for i=1:r
for j=1:c
fitness(i,1)=fitness(i,1)+sin(sqrt(abs(40*x(i))))+1-abs(x(i))/20.0;
end
end
function newpop=ga(pop,pc,pm,chromsome,fit);
pop_size=size(pop,1);
%轮盘赌选择
ps=fit/sum(fit);
pscum=cumsum(ps);%size(pscum)
r=rand(1,pop_size);qw=pscum*ones(1,pop_size);
selected=sum(pscum*ones(1,pop_size)<ones(pop_size,1)*r)+1;
newpop=pop(selected,:);
%交叉
if pop_size/2~=0
pop_size=pop_size-1;
end
for i=1:2:pop_size-1
while pc>rand
c_pt=round(8*rand+1);
pop_tp1=newpop(i,:);pop_tp2=newpop(i+1,:);
newpop(i+1,1:c_pt)=pop_tp1(1,1:c_pt);
newpop(i,c_pt+1:chromsome)=pop_tp2(1,c_pt+1:chromsome);
end
end
% 变异
for i=1:pop_size
if pm>rand
m_pt=1+round(9*rand);
newpop(i,m_pt)=40*rand-20;
end
end
㈢ 关于遗传算法的MATLAB实现
function [x fx string]=fun_SuiJiSuanFa2(N,genLenth,Pc,Pm,downbound,upbound,generation)
%[x fx string]=fun_SuiJiSuanFa2(6,16,0.7,0.01,-3,3,100)
%f 表示函数
%N表示染色体种群大小
%genLenth表示染色体长度
%Pc表示交叉概率
%Pm表示突变概率
%downbound
%upbound
%generation循环代数
%进制编码,此处编写为二进制
num=2;
initdata=randi([0 num-1],N,genLenth);
%二进制编码的权值
weight=(num).^(genLenth/2-1:-1:0);
weights=repmat(weight,N,1);
%保存每代的最好值和平均值,
meanally=zeros(1,generation);
maxally=zeros(1,generation);
Nowx=zeros(generation,genLenth);
for k=1:generation
%解码后的整数
allx1=sum(initdata(:,1:genLenth/2).*weights,2);
allx2=sum(initdata(:,genLenth/2+1:end).*weights,2);
%映射到取值范围
delt=(upbound-downbound)/(num^(genLenth/2)-1);
allx1=allx1.*delt+downbound;
allx2=allx2.*delt+downbound;
%染色体的适应性
ally=f(allx1,allx2);
%平均值,最大值
meanally(k)=mean(ally);
maxally(k)=max(ally);
%找下标,确定是哪条染色体
index=find(ally==maxally(k));
Nowx(k,:)=initdata(index(1),:);
%最大值没有提高就取上次的
if(k>=2&&maxally(k)<maxally(k-1))
maxally(k)=maxally(k-1);
Nowx(k,:)=Nowx(k-1,:);
end
%染色体的适应性比率
ratio=ally./sum(ally);
%交叉,变异
%??交叉几个,从第几个开始。
%此处只交叉1个(总共才6个),随机给一个。
sumRatio=cumsum(ratio);
data=zeros(N,genLenth);
for i=1:N/2
Select1=find(sumRatio>=rand);
Select2=find(sumRatio>=rand);
data(2*i-1,:)=initdata(Select1(1),:);
data(2*i,:)=initdata(Select2(1),:);
if(rand<Pc)
%交叉
location=randi([1,genLenth]);
temp=data(2*i-1,location:end);
data(2*i-1,location:end)=data(2*i,location:end);
data(2*i,location:end)=temp;
else
%变异
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i-1,location)=1-data(2*i-1,location);
end
if(rand<Pm)
location=randi([1,genLenth]);
data(2*i,location)=1-data(2*i,location);
end
end
end
initdata=data;
end
fx=max(maxally);
lastIndex=find(maxally==fx);
string=Nowx(lastIndex(1),:);
x(1)=sum(string(1:genLenth/2).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
x(2)=sum(string(1+genLenth/2:end).*weight).*(upbound-downbound)/(num^(genLenth/2)-1)+downbound;
%绘制性能图
%figure,hold on;
clf;figure(1),hold on;
plot((1:k)',meanally,'b.-');
plot((1:k)',maxally,'r.:');
end
function fun=f(x,y)
fun=(1-x).^2.*exp(-x.^2-(1+y).^2)-(x-x.^3-y.^3).*exp(-x.^2-y.^2);
%fun=-(x-1).^2-3.*(y-2).^2+100;
end
㈣ 遗传算法及matlab代码实现
深入探索遗传算法的世界,让我们通过MATLAB代码实现这一强大工具。遗传算法,如同自然界的演化过程,凭借其全局寻优和自适应特性,在无求导和连续性要求下寻求最优解。它的核心要素包括:基因型的二进制或浮点编码,通过适应度函数评价个体表现,以及一系列智能选择、交叉和变异操作。
想象一下,搜索问题就像袋鼠跳跃,遗传算法就像一次次的进化跳跃,不断接近山峰。每个个体代表一个可能的解,种群间的竞争与合作驱动着算法前进。从随机生成初始群体,到通过轮盘选择、交叉和变异产生新代,直到找到那颗璀璨的最优解星。
让我们以寻找最大值为例,MATLAB代码如下。初始化20个个体,每代迭代2000次,目标精度设定为0.01。二值化变量 [0,10] 到 [0,1023] 的转换,通过decodechrom函数巧妙实现。适应度计算函数 (calfitvalue.m) 设定目标函数:x+10*sin(5*x)+7*cos(4*x),负目标值设为0,便于评估。
选择过程,selection.m 函数采用轮盘法则,根据个体的适应度比例随机选择。交叉操作在 crossover.m 中进行,以设定的概率进行单点交叉,生成新一代种群。而变异环节,mutation.m 负责在基因位上引入随机性,保持搜索的多样性。
在MATLAB的 gaot 工具箱中,这一切操作无缝集成,从种群初始化到优化迭代,再到最优解的输出和曲线绘制,每个步骤都精心设计,确保算法的高效运行。
现在,让我们一起驾驭遗传算法的力量,通过实践学习和理解这个强大的求解工具,在MATLAB的世界里探索无尽的可能性。在数乐君的引导下,欢迎同学们一起加入这个知识探索之旅,共同体验科学的魅力。
㈤ MATLAB遗传算法
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;
clc
clear all
% warning off
%% 遗传算法参数
maxgen=50; %进化代数
sizepop=100; %种群规模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %变异概率
lenchrom=[1 1]; %变量字串长度
bound=[-5 5;-5 5]; %变量范围
%% 个体初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体
avgfitness=[]; %种群平均适应度
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 这个是我的测试函数
% 如果有这个函数的话,可以得到最优值
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];
%% 进化开始
for i=1:maxgen
% 选择操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果显示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线 ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函数值 变量');
% 窗口显示
disp([bestfitness x]);