当前位置:首页 » 操作系统 » 比较与算法

比较与算法

发布时间: 2024-11-19 11:37:48

‘壹’ C语言中什么叫算法,算法在程序设计中的重要作用

一、什么是算法
算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。算法常常含有重复的步骤和一些比较或逻辑判断。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。时间复杂度用“O(数量级)”来表示,称为“阶”。常见的时间复杂度有: O(1)常数阶;O(log2n)对数阶;O(n)线性阶;O(n2)平方阶。
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

二、算法设计的方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。设要求问题规模为N的解,当N=1时,解或为已知,或能非常方便地得到解。能采用递推法构造算法的问题有重要的递推性质,即当得到问题规模为i-1的解后,由问题的递推性质,能从已求得的规模为1,2,…,i-1的一系列解,构造出问题规模为I的解。这样,程序可从i=0或i=1出发,重复地,由已知至i-1规模的解,通过递推,获得规模为i的解,直至得到规模为N的解。
【问题】 阶乘计算
问题描述:编写程序,对给定的n(n≤100),计算并输出k的阶乘k!(k=1,2,…,n)的全部有效数字。
由于要求的整数可能大大超出一般整数的位数,程序用一维数组存储长整数,存储长整数数组的每个元素只存储长整数的一位数字。如有m位成整数N用数组a[ ]存储:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
并用a[0]存储长整数N的位数m,即a[0]=m。按上述约定,数组的每个元素存储k的阶乘k!的一位数字,并从低位到高位依次存于数组的第二个元素、第三个元素……。例如,5!=120,在数组中的存储形式为:
3 0 2 1 ……
首元素3表示长整数是一个3位数,接着是低位到高位依次是0、2、1,表示成整数120。
计算阶乘k!可采用对已求得的阶乘(k-1)!连续累加k-1次后求得。例如,已知4!=24,计算5!,可对原来的24累加4次24后得到120。细节见以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.递归
递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。
能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。
【问题】 编写计算斐波那契(Fibonacci)数列的第n项函数fib(n)。
斐波那契数列为:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (当n>1时)。
写成递归函数有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
递归算法的执行过程分递推和回归两个阶段。在递推阶段,把较复杂的问题(规模为n)的求解推到比原问题简单一些的问题(规模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是说,为计算fib(n),必须先计算fib(n-1)和fib(n-2),而计算fib(n-1)和fib(n-2),又必须先计算fib(n-3)和fib(n-4)。依次类推,直至计算fib(1)和fib(0),分别能立即得到结果1和0。在递推阶段,必须要有终止递归的情况。例如在函数fib中,当n为1和0的情况。
在回归阶段,当获得最简单情况的解后,逐级返回,依次得到稍复杂问题的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的结果,……,在得到了fib(n-1)和fib(n-2)的结果后,返回得到fib(n)的结果。
在编写递归函数时要注意,函数中的局部变量和参数知识局限于当前调用层,当递推进入“简单问题”层时,原来层次上的参数和局部变量便被隐蔽起来。在一系列“简单问题”层,它们各有自己的参数和局部变量。
由于递归引起一系列的函数调用,并且可能会有一系列的重复计算,递归算法的执行效率相对较低。当某个递归算法能较方便地转换成递推算法时,通常按递推算法编写程序。例如上例计算斐波那契数列的第n项的函数fib(n)应采用递推算法,即从斐波那契数列的前两项出发,逐次由前两项计算出下一项,直至计算出要求的第n项。
【问题】 组合问题
问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。例如n=5,r=3的所有组合为: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。设函数为void comb(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节见以下程序中的函数comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}

void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前候选解的规模,以继续试探的过程称为向前试探。

【问题】 组合问题
问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。
采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:
(1) a[i+1]>a,后一个数字比前一个大;
(2) a-i<=n-r+1。
按回溯法的思想,找解过程可以叙述如下:
首先放弃组合数个数为r的条件,候选组合从只有一个数字1开始。因该候选解满足除问题规模之外的全部条件,扩大其规模,并使其满足上述条件(1),候选组合改为1,2。继续这一过程,得到候选组合1,2,3。该候选解满足包括问题规模在内的全部条件,因而是一个解。在该解的基础上,选下一个候选解,因a[2]上的3调整为4,以及以后调整为5都满足问题的全部要求,得到解1,2,4和1,2,5。由于对5不能再作调整,就要从a[2]回溯到a[1],这时,a[1]=2,可以调整为3,并向前试探,得到解1,3,4。重复上述向前试探和向后回溯,直至要从a[0]再回溯时,说明已经找完问题的全部解。按上述思想写成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(“%4d”,a[j]);
printf(“\n”);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}

main()
{ comb(5,3);
}

4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
例如平时购物找钱时,为使找回的零钱的硬币数最少,不考虑找零钱的所有各种发表方案,而是从最大面值的币种开始,按递减的顺序考虑各币种,先尽量用大面值的币种,当不足大面值币种的金额时才去考虑下一种较小面值的币种。这就是在使用贪婪法。这种方法在这里总是最优,是因为银行对其发行的硬币种类和硬币面值的巧妙安排。如只有面值分别为1、5和11单位的硬币,而希望找回总额为15单位的硬币。按贪婪算法,应找1个11单位面值的硬币和4个1单位面值的硬币,共找回5个硬币。但最优的解应是3个5单位面值的硬币。
【问题】 装箱问题
问题描述:装箱问题可简述如下:设有编号为0、1、…、n-1的n种物品,体积分别为v0、v1、…、vn-1。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于0≤i<n,有0<vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。
若考察将n种物品的集合分划成n个或小于n个物品的所有子集,最优解就可以找到。但所有可能划分的总数太大。对适当大的n,找出所有可能的划分要花费的时间是无法承受的。为此,对装箱问题采用非常简单的近似算法,即贪婪法。该算法依次将物品放到它第一个能放进去的箱子中,该算法虽不能保证找到最优解,但还是能找到非常好的解。不失一般性,设n件物品的体积是按从大到小排好序的,即有v0≥v1≥…≥vn-1。如不满足上述要求,只要先对这n件物品按它们的体积从大到小排序,然后按排序结果对物品重新编号即可。装箱算法简单描述如下:
{ 输入箱子的容积;
输入物品种数n;
按体积从大到小顺序,输入各物品的体积;
预置已用箱子链为空;
预置已用箱子计数器box_count为0;
for (i=0;i<n;i++)
{ 从已用的第一只箱子开始顺序寻找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一个箱子,并将物品i放入该箱子;
box_count++;
}
else
将物品i放入箱子j;
}
}
上述算法能求出需要的箱子数box_count,并能求出各箱子所装物品。下面的例子说明该算法不一定能找到最优解,设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。按上述算法计算,需三只箱子,各箱子所装物品分别为:第一只箱子装物品1、3;第二只箱子装物品2、4、5;第三只箱子装物品6。而最优解为两只箱子,分别装物品1、4、5和2、3、6。
若每只箱子所装物品用链表来表示,链表首结点指针存于一个结构中,结构记录尚剩余的空间量和该箱子所装物品链表的首指针。另将全部箱子的信息也构成链表。以下是按以上算法编写的程序。
}

5.分治法
任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算;n=2时,只要作一次比较即可排好序;n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
如果原问题可分割成k个子问题(1<k≤n),且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
分治法所能解决的问题一般具有以下几个特征:
(1)该问题的规模缩小到一定的程度就可以容易地解决;
(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;
(3)利用该问题分解出的子问题的解可以合并为该问题的解;
(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
上述的第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用;第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑贪心法或动态规划法。第四条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
分治法在每一层递归上都有三个步骤:
(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;
(3)合并:将各个子问题的解合并为原问题的解。
6.动态规划法
经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。以下先用实例说明动态规划方法的使用。
【问题】 求两字符序列的最长公共字符子序列
问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。
代码如下:
# include <stdio.h>
# include <string.h>
# define N 100
char a[N],b[N],str[N];

int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i<=m;i++) c[0]=0;
for (i=0;i<=n;i++) c[0]=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]>=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}

char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=’’;
while (k>0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}

void main()
{ printf (“Enter two string(<%d)!\n”,N);
scanf(“%s%s”,a,b);
printf(“LCS=%s\n”,build_lcs(str,a,b));
}
7.迭代法
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
(1) 选一个方程的近似根,赋给变量x0;
(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;
(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:
程序如下:
【算法】迭代法求方程组的根
{ for (i=0;i<n;i++)
x=初始近似根;
do {
for (i=0;i<n;i++)
y = x;
for (i=0;i<n;i++)
x = gi(X);
for (delta=0.0,i=0;i<n;i++)
if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon);
for (i=0;i<n;i++)
printf(“变量x[%d]的近似根是 %f”,I,x);
printf(“\n”);
} 具体使用迭代法求根时应注意以下两种可能发生的情况:
(1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制;
(2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败。
8.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
【问题】 将A、B、C、D、E、F这六个变量排成如图所示的三角形,这六个变量分别取[1,6]上的整数,且均不相同。求使三角形三条边上的变量之和相等的全部解。如图就是一个解。
程序引入变量a、b、c、d、e、f,并让它们分别顺序取1至6的整数,在它们互不相同的条件下,测试由它们排成的如图所示的三角形三条边上的变量之和是否相等,如相等即为一种满足要求的排列,把它们输出。当这些变量取尽所有的组合后,程序就可得到全部可能的解。程序如下:
按穷举法编写的程序通常不能适应变化的情况。如问题改成有9个变量排成三角形,每条边有4个变量的情况,程序的循环重数就要相应改变。

‘贰’ 几种常用温控算法的比较与总结

        最近在做一个有关大气VOCs实时监测的项目,由于该项目要求控温精度在0.1度之内,所以就研究了一下有关温控的算法,我们知道对于一些大惯性的系统,比如加热炉、智能小车中都会用到PID(比例、积分和微分)算法,而PID算法分为二值式、位置式、增量式和分段式,当然也有模糊式等。现根据在实际项目中的应用情况将其总结如下:

        (1)二值式

        二值式温控算法只存在两个状态,不是开,就是关。常用在一些控温精度不高的场合。

        (2)位置式

        位置式PID算法由于计算量比较大,降低了单片机的运行速度,需要单片机比较大的内存,所以在实际应用中应用的比较少,除非有特除要求的场合。

        (3)增量式

        增量式PID算法相比二值式控温精度比较高,相比位置式计算量减少了许多,提高了单片机的运行速度,也增大了单片机的选择余地(内存要求降低)。为了提高温控的速度,减少温控所需要的时间,所以该增加式PID算法常与BangBang算法、大林算法相结合使用。BangBang算法和大林算法即是全功率加热,比如BangBang-PID算法通过会有一个阈值,一旦采用BangBang或大林算法升温到阈值时,就会自动切换到增量式PID算法进行控温。另外该阈值的选择是个难点,阈值小了,升温时间比较长,阈值大了,过冲量比较大,所以说该阈值的选择需要从以下两个方面去确定:升温速率、距离设定值的差值大小等方面。

        (4)分段式

        分段式PID算法虽然比模糊PID算法差一些,但是模糊PID控制大多数还停留在理论阶段,应用到实际系统的还比较少,控制效果如何还不是很确定。分段式PID算法在某些方面与模糊式PID算法有很多相近的地方,也是对信号进行阈值的划分,然后在不同的阈值阶段采用不同的控制参数。分段PID优于模糊PID的地方在于我们现有的工控机在编辑控制算法时是数字式的,模糊PID算法要想实现其功能除了要进行数据的离散化外,其用到的数据参数也比较多导致统计起来比较麻烦,经过以上对比分析,从系统的可实现性方面考虑,还是采用分段式PID算法的比较多些。

        根据项目的实际控制结果表明单纯的采用单一的PID参数进行调节要想达到较为理想的控制效果是不容易的。所以可以根据控制对象的实际情况及偏差的大小,在不同的控制阶段给定不同的PID调节参数,这样可以在偏差大的时候加大比例调节,降低积分作用,偏差小的时候减少比例作用,加大积分作用。这样既可以增加响应速度,超调量也不会太大,这就是分段PID的控制思想。  下面对普通PID与分段PID在同一控制变量下做出的反应做一下对比,他们的输出曲线如下图:

        在上图输出曲线中可以看出在目标值情况相同的情况下,分段PID的响应速度更快,达到目标值时分段PID比普通PID所用的时间少一半,所用控制系统的快速性被分段PID明显提高了。采用分段PID即是将一个控制过程进行分段控制,可以避免采用单一PID控制时对误差积累较多的缺点(采用单一PID算法时,刚开始启动时目标值与实际值的差值会很大,如果有积分变量的话,积分变量大了会导致较大的积累偏差,导致消除困难,造成系统较大的系统超调;积分变量小了会导致精差消除较慢。),这样在每一阶段都对误差进行消除,最后误差结果会小很多。分段PID算法的实现步骤:这里假定阈值a为偏差的50%,阈值b为偏差的30%。

        a、根据工程需要设置阈值a>b>0;

        b、当偏差较大,且偏差大于等于a时,采用PD控制,可加快系统响应;

        c、当偏差较小,且大于b,小于a时采用PI控制;

        d、当偏差小于b时,采用PID控制(P设的小些,I设的大些),可减少系统精差。

        以上是对几种常用PID算法的比较和总结,在实际的项目中用的比较多的是增量式PID算法和分段式PID算法,分段式PID算比单一的增量式PID算法控温速度快,精度更高,虽然分段PID算法参数整定比较繁琐些,但鉴于它的控制速度快、精度高,还是推荐使用分段PID算法应用于温度控制、电机控制等领域或项目中。

‘叁’ 决策树原理及算法比较

决策树是什么?

    和线性回归一样是一种模型,内部节点和叶节点。实现分类,内部节点和叶节点通过有向线(分类规      则)连接起来

决策树的目标是什么?

    决策树通过对数据复杂度的计算,建立特征分类标准,确定最佳分类特征。

    表现为“熵”(entropy)和信息增益(information gain),基于决策树思想的三种算法:ID3,C4.5,CART算法,三种算法的信息衡量的指标也不同.

    熵来表示信息的复杂度,熵越大,信息也就越复杂,公式如下:

那些算法能够实现决策树?

    在决策树构建过程中,什么是比较重要的。特征选择(按照熵变计算),算法产生最重要的部分,

决策树中叶节点的分类比较纯,

节点顺序的排列规则:

熵变:

数据的预处理:

改进思路一般有两个1,换算法;2,调参数

做好数据的预处理:

1,做好特征选择;

2,做好数据离散化、异常值处理、缺失填充

分类器:

在决策树中,从根到达任意一个叶节点的之间最长路径的长度,表示对应的算法排序中最坏情况下的比较次数。这样一个比较算法排序中的最坏情况的比较次数就与其决策树的高度相同,同时如果决策树中每种排列以可达叶子的形式出现,那么关于其决策树高度的下界也就是关于比较排序算法运行时间的下界,

ID3算法存在的缺点:

    1,ID3算法在选择根节点和内部节点分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性

    2,当数据为连续性变量的时候,ID3算法就不是一个合理的算法的模型了

C4.5信息增益比率,

     1,在信息增益的基础上除以split-info,是将信息增益改为信息增益比,以解决取值较多的属性的问题,另外它还可以处理连续型属性,其判别标准是θ,

      2,C4.5算法利用增益/熵值,克服了树生长的过程中,总是‘贪婪’选择变量分类多的进行分类

      3,处理来内需型变量,C4.5的分类树的分支就是两条

衡量指标:

(1)信息增益

基于ID3算法的信息增益对于判定连续型变量的时候病不是最优选择,C4.5算法用了信息增益率这个概念。

分类信息类的定义如下:

这个值表示将训练数据集D划分成对应属性A测试的V个输出v个划分产生的信息,信息增益率定义为:

选择最大信息增益率的属性作为分裂属性

Gini指标,CART

表明样本的“纯净度”。Gini系数避免了信息增益产生的问题,

过拟合问题,非常好的泛化能力,有很好的推广能力

Gini系数的计算:

在分类问题中,假设有k个类,样本点属于第k类的概率为Pk,则概率分布的gini指数的定义为:

如果样本集合D根据某个特征A被分割为D1,D2两个部分,那么在特征A的提哦啊见下,集合D的gini指数的定义为:

Gini指数代表特征A不同分组下的数据集D的不确定性,gini指数越大,样本集合的不确定性也就越大,这一点和熵的概念相类似

决策树原理介绍:

第三步:对于每个属性执行划分:

(1)该属性为离散型变量

记样本中的变量分为m中

穷举m种取值分为两类的划分

对上述所有划分计算GINI系数

(2)该属性为连续型变量

将数据集中从小到大划分

按顺序逐一将两个相临值的均值作为分割点

对上述所有划分计算GINI系数

学历的划分使得顺序的划分有个保证,化为连续型变量处理。

决策树的生成算法分为两个步骤:

预剪枝和后剪枝  CCP(cost and complexity)算法:在树变小和变大的的情况有个判断标准。误差率增益值:α值为误差的变化

决策树的终止条件:

      1,某一个节点的分支所覆盖的样本都是同一类的时候

      2,某一个分支覆盖的样本的个数如果小于一个阈值,那么也可以产生叶子节点,从而终止Tree-Growth

确定叶子结点的类:

      1,第一种方式,叶子结点覆盖的样本都属于同一类

      2, 叶子节点覆盖的样本未必是同一类,所占的大多数,那么该叶子节点的类别就是那个占大多数的类

‘肆’ Dijkstra算法与Floyd算法的比较问题

有必要,因为
1、如果依次对某个顶点运用Dijkstra算法,则与Floyd算法相比,很多路径和结果计算是重复的,虽然复杂度相同,但是运算量差了很多;
2、更为重要的是:Dijkstra算法使用的前提是图中路径长度必须大于等于0;
但是Floyd算法则仅仅要求没有总和小于0的环路就可以了
因此Floyd 算法应用范围比Dijkstra算法要广。

‘伍’ 比较Dijkstra算法与Floyd算法。

(1)Dijkstra算法:在网络中用得多,一个一个节点添加,加一个点刷一次路由表。

Dijkstra算法是典型的算法。Dijkstra算法是很有代表性的算法。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。

(2)Floyd算法:把所有已经连接的路径都标出来,再通过不等式比较来更改路径。

Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

热点内容
ftpgetfilesize 发布:2024-11-19 13:12:59 浏览:959
14位数密码有多少种可能 发布:2024-11-19 12:48:11 浏览:110
删除引索的sql语句 发布:2024-11-19 12:39:13 浏览:64
智能车算法 发布:2024-11-19 12:34:49 浏览:777
linuxredis启动脚本 发布:2024-11-19 12:31:35 浏览:955
刀片机电脑系统在服务器端 发布:2024-11-19 12:27:16 浏览:861
设备监控源码 发布:2024-11-19 12:26:21 浏览:922
服务器主板是什么样子 发布:2024-11-19 12:08:19 浏览:889
奥迪配置怎么比较 发布:2024-11-19 12:07:33 浏览:522
连接共享打印机无权限访问权限 发布:2024-11-19 12:04:01 浏览:295